scholarly journals Syntheses and characterization of three diphenyl phosphate based Cu(II) complexes and the effect of non-covalent interactions on their supramolecular framework

2016 ◽  
Vol 128 (12) ◽  
pp. 1861-1869 ◽  
Author(s):  
DILIP KUMAR MAITY ◽  
FAZLE HAQUE ◽  
BASUDEB DUTTA ◽  
BISWAJIT BHATTACHARYA ◽  
DEBAJYOTI GHOSHAL
2016 ◽  
Vol 18 (43) ◽  
pp. 29946-29954 ◽  
Author(s):  
Rahul Shukla ◽  
Deepak Chopra

Exploring the possibility of formation of pnicogen bonds or chalcogen bonds by utilizing the σ-holes present on nitrogen and oxygen atoms in per-halo substituted complexes.


1978 ◽  
Vol 173 (2) ◽  
pp. 569-578 ◽  
Author(s):  
T Marshall ◽  
A Allen

1. A high-molecular-weight glycoprotein constitutes over 80% by weight of the total glycoprotein from water-soluble pig colonic mucus. 2. It was isolated from from nucleic acid and non-covalently bound protein by nuclease digestion followed by equilibrium centrifugation in a CsCl gradient. 3. The glycoprotein has the following composition by weight: fucose 10.4%; glucosamine 23.9%; galactosamine 8.3%; sialic acid 9.9%; galactose 20.8%; sulphate 3.0%; protein 13.3%; moisture about 10%. 4. The native glycoprotein has the high mol.wt. of 15×10(6). 5. Reduction of the native glycoprotein with 2-mercaptoethanol results in a glycoprotein of mol.wt. 6×10(6). 6. Pronase digestion removes 29% of the protein (3% of the glycoprotein) but none of the carbohydrate. 7. The molecular weight of the Pronase-digested glycoprotein is 1.5×10(6), which is halved to 0.76×10(6) on reduction with 2-mercaptoethanol. 8. The contribution of non-covalent interactions, disulphide bridges and the non-glycosylated peptide core to the quaternary structure of the glycoprotein are discussed and compared with the known structure of pig gastric glycoportein.


2021 ◽  
Author(s):  
Shaotang Song ◽  
Jie Su ◽  
Lulu Wang ◽  
Zhen Xu ◽  
Chia-Hsiu Hsu ◽  
...  

Deciphering rich non-covalent interactions that govern many chemical and biological processes is crucial for the design of drugs and controlling molecular assemblies and their chemical transformations. However, real-space characterization of...


2021 ◽  
Vol 1 (1) ◽  
pp. 1-11
Author(s):  
Sudipta Pathak ◽  
◽  
Shibashis Halder ◽  
Malay Dolai ◽  
Saugata Konar ◽  
...  

During attempts to produce penta-substituted cyclohexanol involving weak interactions, we have crystallized A [where, A = (1S,2S,3R,4S,6S)-2,6-bis(4-bromrophenyl)-4-hydroxy-4-(pyridin- 2-yl)cyclohexane-1,3-diyl)-bis(pyridin-2-ylmethanone)] in DMF-water (1 : 1) solvent mixture with the P-1 space group. Interestingly, in this class of compound, weak interactions have not been explored elaborately in the literature. Herein, we have investigated various types of weak interactions like π · · · π interaction, C–H · · · π interaction, Br· · · Br interaction and H-bonding interaction. These types of non-covalent interactions attribute to the supramolecular framework in the crystal packing of the studied molecule. In addition, the composition of the organic molecule A is confirmed from Single crystal X-ray structure and then performed the theoretical geometry optimization (DFT study) on it.


2016 ◽  
Vol 12 ◽  
pp. 1453-1458 ◽  
Author(s):  
Golo Storch ◽  
Sebastian Pallmann ◽  
Frank Rominger ◽  
Oliver Trapp

Stereodynamic ligands offer intriguing possibilities in enantioselective catalysis. “NU-BIPHEPs” are a class of stereodynamic diphosphine ligands which are easily accessible via rhodium-catalyzed double [2 + 2 + 2] cycloadditions. This study explores the preparation of differently functionalized “NU-BIPHEP(O)” compounds, the characterization of non-covalent adduct formation and the quantification of enantiomerization barriers. In order to explore the possibilities of functionalization, we studied modifications of the ligand backbone, e.g., with 3,5-dichlorobenzoyl chloride. Diastereomeric adducts with Okamoto-type cellulose derivatives and on-column deracemization were realized on the basis of non-covalent interactions. Enantioselective dynamic HPLC (DHPLC) allowed for the determination of rotational barriers of ΔG ‡ 298K = 92.2 ± 0.3 kJ mol−1 and 99.5 ± 0.1 kJ mol−1 underlining the stereodynamic properties of “NU-BIPHEPs” and “NU-BIPHEP(O)s”, respectively. These results make the preparation of tailor-made functionalized stereodynamic ligands possible and give an outline for possible applications in enantioselective catalysis.


2015 ◽  
Vol 1718 ◽  
pp. 9-14
Author(s):  
Konstanze K. Julich-Gruner ◽  
Andreas Lendlein ◽  
Aldo R. Boccaccini ◽  
Axel T. Neffe

ABSTRACTFunctionalization of gelatin with desaminotyrosine (DAT) and desamino tyrosyl tyrosine (DATT) has been demonstrated to allow network formation based on non-covalent interactions of the aromatic moieties. Based on the observation that the DAT(T) groups furthermore could interact with hydroxyapatite fillers, here it was investigated whether such interactions of DAT(T) could also be employed to stabilize composites formed by functionalized gelatins and bioactive glass (BG) particles. Because of sedimentation of the BG microparticles during the gelification, anisotropic composites with two distinct layers were formed. The characterization of mechanical properties by tensile tests and rheology showed that all composites of non-functionalized and DAT(T) functionalized gelatins with BG microparticles showed an increased Young’s modulus (E) up to 3 MPa, an increased storage modulus (G’) up to 100 kPa, increased tensile strength (σmax) up to 3.4 MPa, and increased loss modulus (G’’) compared to the pure matrices. As the observed effects were more pronounced in the DAT(T) functionalized gelatins compared to non-functionalized gelatins, and a much increased thermal stability of these composites was found, it is likely that there are binding interactions between the aromatic moieties and the BG microparticles. This effect open opportunities for the further development of this type of gelatin-based composites for bone regeneration applications.


Sign in / Sign up

Export Citation Format

Share Document