scholarly journals Sustained generation of peroxide from the air by carbon nano onion under visible light to combat RNA virus

2022 ◽  
Vol 134 (1) ◽  
Author(s):  
Ankit Samanta ◽  
Subrata Ghosh ◽  
Sabyasachi Sarkar
Keyword(s):  
2021 ◽  
Author(s):  
Tyler Cuthbert ◽  
Siobhan Ennis ◽  
Stefania F. Musolino ◽  
Heather L. Buckley ◽  
Masahiro Niikura ◽  
...  

<p>The SARS-CoV-2 pandemic has highlighted the weaknesses of relying on single-use mask and respirator personal protective equipment (PPE) and the global supply chain that supports this market. There have been no major innovations in filter technology for PPE in the past two decades. Non-woven textiles used for filtering PPE are single-use products in the healthcare environment; use and protection is focused on preventing infection from airborne or aerosolized pathogens such as Influenza A virus SARS-CoV-2. Recently, C–H bond activation under mild and controllable conditions was reported for crosslinking commodity aliphatic polymers such as polyethylene and polypropylene. Significantly, these are the same types of polymers used in PPE filtration systems. In this report, we take advantage of this C–H insertion method to covalently attach a photosensitizing zinc-porphyrin to the surface of a melt-blow non-woven textile filter material. With the photosensitizer covalently attached to the surface of the textile, illumination with visible light was expected to produce oxidizing <sup>1</sup>O<sub>2</sub>/ROS at the surface of the material that would result in pathogen inactivation. The filter was tested for its ability to inactivate Influenza A virus, an enveloped RNA virus similar to SARS-CoV-2, over a period of four hours with illumination of high intensity visible light. The photosensitizer-functionalized polypropylene filter inactivated our model virus by 99.99% in comparison to a control.</p>


2021 ◽  
Author(s):  
Tyler Cuthbert ◽  
Siobhan Ennis ◽  
Stefania F. Musolino ◽  
Heather L. Buckley ◽  
Masahiro Niikura ◽  
...  

<p>The SARS-CoV-2 pandemic has highlighted the weaknesses of relying on single-use mask and respirator personal protective equipment (PPE) and the global supply chain that supports this market. There have been no major innovations in filter technology for PPE in the past two decades. Non-woven textiles used for filtering PPE are single-use products in the healthcare environment; use and protection is focused on preventing infection from airborne or aerosolized pathogens such as Influenza A virus SARS-CoV-2. Recently, C–H bond activation under mild and controllable conditions was reported for crosslinking commodity aliphatic polymers such as polyethylene and polypropylene. Significantly, these are the same types of polymers used in PPE filtration systems. In this report, we take advantage of this C–H insertion method to covalently attach a photosensitizing zinc-porphyrin to the surface of a melt-blow non-woven textile filter material. With the photosensitizer covalently attached to the surface of the textile, illumination with visible light was expected to produce oxidizing <sup>1</sup>O<sub>2</sub>/ROS at the surface of the material that would result in pathogen inactivation. The filter was tested for its ability to inactivate Influenza A virus, an enveloped RNA virus similar to SARS-CoV-2, over a period of four hours with illumination of high intensity visible light. The photosensitizer-functionalized polypropylene filter inactivated our model virus by 99.99% in comparison to a control.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
T. J. Cuthbert ◽  
S. Ennis ◽  
S. F. Musolino ◽  
H. L. Buckley ◽  
M. Niikura ◽  
...  

AbstractThe SARS-CoV-2 pandemic has highlighted the weaknesses of relying on single-use mask and respirator personal protective equipment (PPE) and the global supply chain that supports this market. There have been no major innovations in filter technology for PPE in the past two decades. Non-woven textiles used for filtering PPE are single-use products in the healthcare environment; use and protection is focused on preventing infection from airborne or aerosolized pathogens such as Influenza A virus or SARS-CoV-2. Recently, C–H bond activation under mild and controllable conditions was reported for crosslinking commodity aliphatic polymers such as polyethylene and polypropylene. Significantly, these are the same types of polymers used in PPE filtration systems. In this report, we take advantage of this C–H insertion method to covalently attach a photosensitizing zinc-porphyrin to the surface of a melt-blow non-woven textile filter material. With the photosensitizer covalently attached to the surface of the textile, illumination with visible light was expected to produce oxidizing 1O2/ROS at the surface of the material that would result in pathogen inactivation. The filter was tested for its ability to inactivate Influenza A virus, an enveloped RNA virus similar to SARS-CoV-2, over a period of four hours with illumination of high intensity visible light. The photosensitizer-functionalized polypropylene filter inactivated our model virus by 99.99% in comparison to a control.


Author(s):  
Shawn Williams ◽  
Xiaodong Zhang ◽  
Susan Lamm ◽  
Jack Van’t Hof

The Scanning Transmission X-ray Microscope (STXM) is well suited for investigating metaphase chromosome structure. The absorption cross-section of soft x-rays having energies between the carbon and oxygen K edges (284 - 531 eV) is 6 - 9.5 times greater for organic specimens than for water, which permits one to examine unstained, wet biological specimens with resolution superior to that attainable using visible light. The attenuation length of the x-rays is suitable for imaging micron thick specimens without sectioning. This large difference in cross-section yields good specimen contrast, so that fewer soft x-rays than electrons are required to image wet biological specimens at a given resolution. But most imaging techniques delivering better resolution than visible light produce radiation damage. Soft x-rays are known to be very effective in damaging biological specimens. The STXM is constructed to minimize specimen dose, but it is important to measure the actual damage induced as a function of dose in order to determine the dose range within which radiation damage does not compromise image quality.


Author(s):  
N. H. Olson ◽  
T. S. Baker ◽  
Wu Bo Mu ◽  
J. E. Johnson ◽  
D. A. Hendry

Nudaurelia capensis β virus (NβV) is an RNA virus of the South African Pine Emperor moth, Nudaurelia cytherea capensis (Lepidoptera: Saturniidae). The NβV capsid is a T = 4 icosahedron that contains 60T = 240 subunits of the coat protein (Mr = 61,000). A three-dimensional reconstruction of the NβV capsid was previously computed from visions embedded in negative stain suspended over holes in a carbon film. We have re-examined the three-dimensional structure of NβV, using cryo-microscopy to examine the native, unstained structure of the virion and to provide a initial phasing model for high-resolution x-ray crystallographic studiesNβV was purified and prepared for cryo-microscopy as described. Micrographs were recorded ∼1 - 2 μm underfocus at a magnification of 49,000X with a total electron dose of about 1800 e-/nm2.


Author(s):  
C. Jacobsen ◽  
J. Fu ◽  
S. Mayer ◽  
Y. Wang ◽  
S. Williams

In scanning luminescence x-ray microscopy (SLXM), a high resolution x-ray probe is used to excite visible light emission (see Figs. 1 and 2). The technique has been developed with a goal of localizing dye-tagged biochemically active sites and structures at 50 nm resolution in thick, hydrated biological specimens. Following our initial efforts, Moronne et al. have begun to develop probes based on biotinylated terbium; we report here our progress towards using microspheres for tagging.Our initial experiments with microspheres were based on commercially-available carboxyl latex spheres which emitted ~ 5 visible light photons per x-ray absorbed, and which showed good resistance to bleaching under x-ray irradiation. Other work (such as that by Guo et al.) has shown that such spheres can be used for a variety of specific labelling applications. Our first efforts have been aimed at labelling ƒ actin in Chinese hamster ovarian (CHO) cells. By using a detergent/fixative protocol to load spheres into cells with permeabilized membranes and preserved morphology, we have succeeded in using commercial dye-loaded, spreptavidin-coated 0.03μm polystyrene spheres linked to biotin phalloidon to label f actin (see Fig. 3).


2019 ◽  
Vol 6 (21) ◽  
pp. 3693-3697 ◽  
Author(s):  
Jiu-Jian Ji ◽  
Zhi-Qiang Zhu ◽  
Li-Jin Xiao ◽  
Dong Guo ◽  
Xiao Zhu ◽  
...  
Keyword(s):  

A novel, green and efficient visible-light-promoted decarboxylative aminoalkylation reaction of imidazo[1,2-a]pyridines with N-aryl glycines has been described.


Sign in / Sign up

Export Citation Format

Share Document