Studies of metaphase chromosomes in the scanning transmission x-ray microscope: Image fidelity, radiation damage and specimen preparation

Author(s):  
Shawn Williams ◽  
Xiaodong Zhang ◽  
Susan Lamm ◽  
Jack Van’t Hof

The Scanning Transmission X-ray Microscope (STXM) is well suited for investigating metaphase chromosome structure. The absorption cross-section of soft x-rays having energies between the carbon and oxygen K edges (284 - 531 eV) is 6 - 9.5 times greater for organic specimens than for water, which permits one to examine unstained, wet biological specimens with resolution superior to that attainable using visible light. The attenuation length of the x-rays is suitable for imaging micron thick specimens without sectioning. This large difference in cross-section yields good specimen contrast, so that fewer soft x-rays than electrons are required to image wet biological specimens at a given resolution. But most imaging techniques delivering better resolution than visible light produce radiation damage. Soft x-rays are known to be very effective in damaging biological specimens. The STXM is constructed to minimize specimen dose, but it is important to measure the actual damage induced as a function of dose in order to determine the dose range within which radiation damage does not compromise image quality.

Author(s):  
D. A. Carpenter ◽  
M. A. Taylor

The development of intense sources of x rays has led to renewed interest in the use of microbeams of x rays in x-ray fluorescence analysis. Sparks pointed out that the use of x rays as a probe offered the advantages of high sensitivity, low detection limits, low beam damage, and large penetration depths with minimal specimen preparation or perturbation. In addition, the option of air operation provided special advantages for examination of hydrated systems or for nondestructive microanalysis of large specimens.The disadvantages of synchrotron sources prompted the development of laboratory-based instrumentation with various schemes to maximize the beam flux while maintaining small point-to-point resolution. Nichols and Ryon developed a microprobe using a rotating anode source and a modified microdiffractometer. Cross and Wherry showed that by close-coupling the x-ray source, specimen, and detector, good intensities could be obtained for beam sizes between 30 and 100μm. More importantly, both groups combined specimen scanning with modern imaging techniques for rapid element mapping.


2021 ◽  
Vol 28 (5) ◽  
Author(s):  
Elspeth F. Garman ◽  
Martin Weik

An understanding of radiation damage effects suffered by biological samples during structural analysis using both X-rays and electrons is pivotal to obtain reliable molecular models of imaged molecules. This special issue on radiation damage contains six papers reporting analyses of damage from a range of biophysical imaging techniques. For X-ray diffraction, an in-depth study of multi-crystal small-wedge data collection single-wavelength anomalous dispersion phasing protocols is presented, concluding that an absorbed dose of 5 MGy per crystal was optimal to allow reliable phasing. For small-angle X-ray scattering, experiments are reported that evaluate the efficacy of three radical scavengers using a protein designed to give a clear signature of damage in the form of a large conformational change upon the breakage of a disulfide bond. The use of X-rays to induce OH radicals from the radiolysis of water for X-ray footprinting are covered in two papers. In the first, new developments and the data collection pipeline at the NSLS-II high-throughput dedicated synchrotron beamline are described, and, in the second, the X-ray induced changes in three different proteins under aerobic and low-oxygen conditions are investigated and correlated with the absorbed dose. Studies in XFEL science are represented by a report on simulations of ultrafast dynamics in protic ionic liquids, and, lastly, a broad coverage of possible methods for dose efficiency improvement in modalities using electrons is presented. These papers, as well as a brief synopsis of some other relevant literature published since the last Journal of Synchrotron Radiation Special Issue on Radiation Damage in 2019, are summarized below.


Author(s):  
Steve Lindaas ◽  
Chris Jacobsen ◽  
Alex Kalinovsky ◽  
Malcolm Howells

Soft x-ray microscopy offers an approach to transmission imaging of wet, micron-thick biological objects at a resolution superior to that of optical microscopes and with less specimen preparation/manipulation than electron microscopes. Gabor holography has unique characteristics which make it particularly well suited for certain investigations: it requires no prefocussing, it is compatible with flash x-ray sources, and it is able to use the whole footprint of multimode sources. Our method serves to refine this technique in anticipation of the development of suitable flash sources (such as x-ray lasers) and to develop cryo capabilities with which to reduce specimen damage. Our primary emphasis has been on biological imaging so we use x-rays in the water window (between the Oxygen-K and Carbon-K absorption edges) with which we record holograms in vacuum or in air.The hologram is recorded on a high resolution recording medium; our work employs the photoresist poly(methylmethacrylate) (PMMA). Following resist “development” (solvent etching), a surface relief pattern is produced which an atomic force microscope is aptly suited to image.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4554
Author(s):  
Ralph-Alexandru Erdelyi ◽  
Virgil-Florin Duma ◽  
Cosmin Sinescu ◽  
George Mihai Dobre ◽  
Adrian Bradu ◽  
...  

The most common imaging technique for dental diagnoses and treatment monitoring is X-ray imaging, which evolved from the first intraoral radiographs to high-quality three-dimensional (3D) Cone Beam Computed Tomography (CBCT). Other imaging techniques have shown potential, such as Optical Coherence Tomography (OCT). We have recently reported on the boundaries of these two types of techniques, regarding. the dental fields where each one is more appropriate or where they should be both used. The aim of the present study is to explore the unique capabilities of the OCT technique to optimize X-ray units imaging (i.e., in terms of image resolution, radiation dose, or contrast). Two types of commercially available and widely used X-ray units are considered. To adjust their parameters, a protocol is developed to employ OCT images of dental conditions that are documented on high (i.e., less than 10 μm) resolution OCT images (both B-scans/cross sections and 3D reconstructions) but are hardly identified on the 200 to 75 μm resolution panoramic or CBCT radiographs. The optimized calibration of the X-ray unit includes choosing appropriate values for the anode voltage and current intensity of the X-ray tube, as well as the patient’s positioning, in order to reach the highest possible X-rays resolution at a radiation dose that is safe for the patient. The optimization protocol is developed in vitro on OCT images of extracted teeth and is further applied in vivo for each type of dental investigation. Optimized radiographic results are compared with un-optimized previously performed radiographs. Also, we show that OCT can permit a rigorous comparison between two (types of) X-ray units. In conclusion, high-quality dental images are possible using low radiation doses if an optimized protocol, developed using OCT, is applied for each type of dental investigation. Also, there are situations when the X-ray technology has drawbacks for dental diagnosis or treatment assessment. In such situations, OCT proves capable to provide qualitative images.


1996 ◽  
Vol 2 (2) ◽  
pp. 53-62 ◽  
Author(s):  
Henry N. Chapman ◽  
Jenny Fu ◽  
Chris Jacobsen ◽  
Shawn Williams

The methods of immunolabeling make visible the presence of specific antigens, proteins, genetic sequences, or functions of a cell. In this paper we present examples of imaging immunolabels in a scanning transmission x-ray microscope using the novel method of dark-field contrast. Colloidal gold, or silver-enhanced colloidal gold, is used as a label, which strongly scatters x-rays. This leads to a high-contrast dark-field image of the label and reduced radiation dose to the specimen. The x-ray images are compared with electron micrographs of the same labeled, unsectioned, whole cell. It is verified that the dark-field x-ray signal is primarily due to the label and the bright-field x-ray signal, showing absorption due to carbon, is largely unaffected by the label. The label can be well visualized even when it is embedded in or laying behind dense material, such as the cell nucleus. The resolution of the images is measured to be 60 nm, without the need for computer processing. This figure includes the x-ray microscope resolution and the accuracy of the label positioning. The technique should be particularly useful for the study of relatively thick (up to 10 μm), wet, or frozen hydrated specimens.


2013 ◽  
Vol 21 (2) ◽  
pp. 7-7
Author(s):  
Charles Lyman

Using X rays to produce magnified images of objects has been a goal for 150 years. Ever since Ernst Abbe declared in 1873 that light microscope resolution was limited by the wavelength of light, the search was on for a microscopy medium with a wavelength shorter than visible light (<500 nm). When Roentgen discovered X rays in 1895, it was thought that the new medium may have been found. Soon it was clear, however, that it was not easy to construct a physical lens for X rays because the rays penetrated all lens construction materials. X-ray “radiography images” of a few times magnification were possible but only as projection images, formed as X rays from millimeter-sized sources traveled in straight lines through the specimen to be captured on film. Unfortunately, even in the best cases, useful magnification was limited by the relatively large “point source” of X rays and the large grain size of X-ray film (both about 0.1–1.0 mm).


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 544
Author(s):  
Andrei Rogalev ◽  
Fabrice Wilhelm ◽  
Elena Ovchinnikova ◽  
Aydar Enikeev ◽  
Roman Bakonin ◽  
...  

Absorption spectra of two orthogonal linearly polarized x-rays in a single CeCoGe3 crystal were measured at the ID12 beamline of the ESRF for the energies near the K-edges of Ge, Co and near the L23 edges of Ce. The X-ray natural linear dichroism (XNLD) was revealed in the vicinity of all the absorption edges, which indicates a splitting of electronic states in a crystalline field. Mathematical modelling in comparison with experimental data allowed the isotropic and anisotropic parts of atomic absorption cross section in CeCoGe3 to be determined near all measured absorption edges. The calculations also show that the “average” anisotropy of the cross section close to the Ge K-edge revealed in the experiment is less than the partial anisotropic contributions corresponding to Ge atoms in two different Wyckoff positions.


Author(s):  
Dipayan Das ◽  
KC Santosh ◽  
Umapada Pal

Abstract Since December 2019, the Coronavirus Disease (COVID-19) pandemic has caused world-wide turmoil in less than a couple of months, and the infection, caused by SARS-CoV-2, is spreading at an unprecedented rate. AI-driven tools are used to identify Coronavirus outbreaks as well as forecast their nature of spread, where imaging techniques are widely used, such as CT scans and chest X-rays (CXRs). In this paper, motivated by the fact that X-ray imaging systems are more prevalent and cheaper than CT scan systems, a deep learning-based Convolutional Neural Network (CNN) model, which we call Truncated Inception Net, is proposed to screen COVID-19 positive CXRs from other non-COVID and/or healthy cases. To validate our proposal, six different types of datasets were employed by taking the following CXRs: COVID-19 positive, Pneumonia positive, Tuberculosis positive, and healthy cases into account. The proposed model achieved an accuracy of 99.96% (AUC of 1.0) in classifying COVID- 19 positive cases from combined Pneumonia and healthy cases. Similarly, it achieved an accuracy of 99.92% (AUC of 0.99) in classifying COVID-19 positive cases from combined Pneumonia, Tuberculosis and healthy CXRs. To the best of our knowledge, as of now, the achieved results outperform the existing AI-driven tools for screening COVID-19 using CXRs.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Pasquale Delogu ◽  
Vittorio Di Trapani ◽  
Luca Brombal ◽  
Giovanni Mettivier ◽  
Angelo Taibi ◽  
...  

Abstract The limits of mammography have led to an increasing interest on possible alternatives such as the breast Computed Tomography (bCT). The common goal of all X-ray imaging techniques is to achieve the optimal contrast resolution, measured through the Contrast to Noise Ratio (CNR), while minimizing the radiological risks, quantified by the dose. Both dose and CNR depend on the energy and the intensity of the X-rays employed for the specific imaging technique. Some attempts to determine an optimal energy for bCT have suggested the range 22 keV–34 keV, some others instead suggested the range 50 keV–60 keV depending on the parameters considered in the study. Recent experimental works, based on the use of monochromatic radiation and breast specimens, show that energies around 32 keV give better image quality respect to setups based on higher energies. In this paper we report a systematic study aiming at defining the range of energies that maximizes the CNR at fixed dose in bCT. The study evaluates several compositions and diameters of the breast and includes various reconstruction algorithms as well as different dose levels. The results show that a good compromise between CNR and dose is obtained using energies around 28 keV.


1988 ◽  
Vol 32 ◽  
pp. 115-120 ◽  
Author(s):  
D. A. Carpenter ◽  
M. A. Taylor ◽  
C. E. Holcombe

A laboratory-based X-ray microprobe, composed of a high-brilliance microfocus X-ray tube, coupled with a small glass capillary, has been developed for materials applications. Because of total external reflectance of X rays from the smooth inside bore of the glass capillary, the microprobe has a high sensitivity as well as a high spatial resolution. The use of X rays to excite elemental fluorescence offers the advantages of good peak-to-background, the ability to operate in air, and minimal specimen preparation. In addition, the development of laboratory-based instrumentation has been of Interest recently because of greater accessibility when compared with synchrotron X-ray microprobes.


Sign in / Sign up

Export Citation Format

Share Document