scholarly journals Role of land state in a high resolution mesoscale model for simulating the Uttarakhand heavy rainfall event over India

2016 ◽  
Vol 125 (3) ◽  
pp. 475-498 ◽  
Author(s):  
P V Rajesh ◽  
S Pattnaik ◽  
D Rai ◽  
K K Osuri ◽  
U C Mohanty ◽  
...  
2018 ◽  
Vol 131 (4) ◽  
pp. 1035-1054 ◽  
Author(s):  
Devajyoti Dutta ◽  
A. Routray ◽  
D. Preveen Kumar ◽  
John P. George ◽  
Vivek Singh

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Basile Pauthier ◽  
Benjamin Bois ◽  
Thierry Castel ◽  
D. Thévenin ◽  
Carmela Chateau Smith ◽  
...  

A 24-hour heavy rainfall event occurred in northeastern France from November 3 to 4, 2014. The accuracy of the quantitative precipitation estimation (QPE) by PANTHERE and ANTILOPE radar-based gridded products during this particular event, is examined at both mesoscale and local scale, in comparison with two reference rain-gauge networks. Mesoscale accuracy was assessed for the total rainfall accumulated during the 24-hour event, using the Météo France operational rain-gauge network. Local scale accuracy was assessed for both total event rainfall and hourly rainfall accumulations, using the recently developed HydraVitis high-resolution rain gauge network Evaluation shows that (1) PANTHERE radar-based QPE underestimates rainfall fields at mesoscale and local scale; (2) both PANTHERE and ANTILOPE successfully reproduced the spatial variability of rainfall at local scale; (3) PANTHERE underestimates can be significantly improved at local scale by merging these data with rain gauge data interpolation (i.e., ANTILOPE). This study provides a preliminary evaluation of radar-based QPE at local scale, suggesting that merged products are invaluable for applications at very high resolution. The results obtained underline the importance of using high-density rain-gauge networks to obtain information at high spatial and temporal resolution, for better understanding of local rainfall variation, to calibrate remotely sensed rainfall products.


Author(s):  
Erma Yulihastin ◽  
Danang Eko Nuryanto ◽  
Robi Muharsyah

The movement direction of propagating convective systems originating from both inland and offshore over the north coast of West Java in Indonesia is determined primarily by the prevailing wind. However, the role of a land-sea contrast and a rugged topography over southern West Java is also expected to affect propagating convective systems by increasing land-sea breezes and enhancing upward motion. These hypotheses are tested using a weather prediction model incorporating convection (up to 3 km height) to simulate the heavy rainfall event during 26–29 January associated with the 2002 Jakarta flood. First, we addressed the influence of land-sea contrast and topography on the local circulation, particularly in the area surrounding Jakarta, by replacing the inland topography over western Indonesia (96°–119°E, 17°S–0°) with a water body with an altitude of 0 m. We then compared the results of model simulations with and without topography. The results show that the main role of the topography here is enhancing the upward motion and generating a deep convective cloud in response to the land-based convective system during 26–27 January 2002, which then continuously and rapidly propagates offshore due to the cold pool mechanism. Furthermore, the land-sea contrast has a significant role in increasing sea breeze under the rapidness of the landward propagation system during 28–29 January 2002, which was strengthened by the gravity waves and resulted in early morning convection over coastal regions.


2011 ◽  
Vol 3 (2) ◽  
pp. 261-270 ◽  
Author(s):  
M. N. Ahasan ◽  
Dr. M. A. M. Chowdhury ◽  
D. A. Quadir

An attempt has been made to simulate a heavy rainfall event on 14 September 2004 over Dhaka, Bangladesh using the fifth-generation PSU/NCAR Mesoscale model (MM5). This was an extraordinary rainfall event and recorded 341 mm rainfall in 24-h which was the highest ever recorded. The MM5 model was run on triple-nested domains at 45, 15, 5 km horizontal resolutions using Anthes-Kuo cumulus  scheme. The model performance was evaluated by examining the different predicted parameters like mean sea level pressure, upper and lower level circulations, moisture, windshear, vorticity, convergence and rainfall. The model derived rainfall was compared with TRMM rainfall. The present results indicate that the MM5 model with the right combination of the nesting domain, horizontal resolution and cumulus scheme was able to simulate the heavy rainfall event, and associated dynamical and thermo-dynamical features reasonably well. The MM5 model suggested that the highly localized heavy rain over Dhaka was the result of an interaction of the monsoon land depression with southwest summer monsoon weather systems. The analysis shows that the depression almost remains stationary over southwest Bangladesh and zone of heavy rain was laid over Dhaka, and required moisture have been supplied from the Bay of Bengal.Keywords: Depression; Heavy rainfall; TRMM; MM5 model; High resolution.© 2011 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.doi:10.3329/jsr.v3i2.6656                 J. Sci. Res. 3 (2), 261-270 (2011)


Sign in / Sign up

Export Citation Format

Share Document