scholarly journals Roles of Land and Topography on Propagating Convective Systems During the Heavy Rainfall Event of the 2002 Jakarta Flood, Indonesia

Author(s):  
Erma Yulihastin ◽  
Danang Eko Nuryanto ◽  
Robi Muharsyah

The movement direction of propagating convective systems originating from both inland and offshore over the north coast of West Java in Indonesia is determined primarily by the prevailing wind. However, the role of a land-sea contrast and a rugged topography over southern West Java is also expected to affect propagating convective systems by increasing land-sea breezes and enhancing upward motion. These hypotheses are tested using a weather prediction model incorporating convection (up to 3 km height) to simulate the heavy rainfall event during 26–29 January associated with the 2002 Jakarta flood. First, we addressed the influence of land-sea contrast and topography on the local circulation, particularly in the area surrounding Jakarta, by replacing the inland topography over western Indonesia (96°–119°E, 17°S–0°) with a water body with an altitude of 0 m. We then compared the results of model simulations with and without topography. The results show that the main role of the topography here is enhancing the upward motion and generating a deep convective cloud in response to the land-based convective system during 26–27 January 2002, which then continuously and rapidly propagates offshore due to the cold pool mechanism. Furthermore, the land-sea contrast has a significant role in increasing sea breeze under the rapidness of the landward propagation system during 28–29 January 2002, which was strengthened by the gravity waves and resulted in early morning convection over coastal regions.

2016 ◽  
Vol 125 (3) ◽  
pp. 475-498 ◽  
Author(s):  
P V Rajesh ◽  
S Pattnaik ◽  
D Rai ◽  
K K Osuri ◽  
U C Mohanty ◽  
...  

Climate ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 73
Author(s):  
Modise Wiston ◽  
Kgakgamatso Marvel Mphale

Southern east Africa is prone to some extreme weather events and interannual variability of the hydrological cycle, including tropical cyclones and heavy rainfall events. Most of these events occur during austral summer and are linked to shifts in the intertropical convergence zone, changes in El Niño Southern Oscillation signatures, sea surface temperature and sea level pressure. A typical example include mesoscale convective systems (MCSs) that occur between October and March along the eastern part, adjacent to the warm waters of Mozambique Channel and Agulhas Current. In this study we discuss a heavy rainfall event over southern Africa, focusing particularly on the period 15–20 January 2013, the period during which MCSs were significant over the subcontinent. This event recorded one of the historic rainfalls due to extreme flooding and overflows, loss of lives and destruction of economic and social infrastructure. An active South Indian Convergence Zone was associated with the rainfall event sustained by a low-level trough linked to a Southern Hemisphere planetary wave pattern and an upper-level ridge over land. In addition, also noteworthy is a seemingly strong connection to the strength of the African Easterly Jet stream. Using rainfall data, satellite imagery and re-analysis (model processed data combined with observations) data, our analysis indicates that there was a substantial relation between rainfall totals recorded/observed and the presence of MCSs. The low-level trough and upper-level ridge contributed to moisture convergence, particularly from tropical South East Atlantic Ocean, which in turn contributed to the prolonged life span of the rainfall event. Positive temperature anomalies favored the substantial contribution of moisture fluxes from the Atlantic Ocean. This study provides a contextual assessment of rainfall processes and insight into the physical control mechanisms and feedback of large-scale convective interactions over tropical southern Africa.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
B. H. Vaid

The Numerical Simulations of the June 16, 2010, Heavy Rainfall Event over Singapore are highlighted by an unprecedented precipitation which produced widespread, massive flooding in and around Singapore. The objective of this study is to check the ability of Weather Research Forecasting version 3 (WRFV3) model to predict the heavy rain event over Singapore. Results suggest that simulated precipitation amounts are sensitive to the choice of cumulus parameterization. Various model configurations with initial and boundary conditions from the NCEP Final Global Analysis (FNL), convective and microphysical process parameterizations, and nested-grid interactions have been tested with 48-hour (June 15–17, 2010) integrations of the WRFV3. The spatial distributions of large-scale circulation and dynamical and thermodynamical fields have been simulated reasonably well in the model. The model produced maximum precipitation of ~5 cm over Changi airport which is very near to observation (6.4 cm recorded at Changi airport). The model simulated dynamic and thermodynamic features at 00UTC of June 16, 2010, lead to understand the structure of the mesoscale convective system (MCS) that caused the extreme precipitation over Singapore. It is observed that Singapore heavy rain was the result of an interaction of synoptic-scale weather systems with the mesoscale features.


2011 ◽  
Vol 139 (6) ◽  
pp. 1911-1931 ◽  
Author(s):  
Takuya Kawabata ◽  
Tohru Kuroda ◽  
Hiromu Seko ◽  
Kazuo Saito

Abstract A cloud-resolving nonhydrostatic four-dimensional variational data assimilation system (NHM-4DVAR) was modified to directly assimilate radar reflectivity and applied to a data assimilation experiment using actual observations of a heavy rainfall event. Modifications included development of an adjoint model of the warm rain process, extension of control variables, and development of an observation operator for radar reflectivity. The responses of the modified NHM-4DVAR were confirmed by single-observation assimilation experiments for an isolated deep convection, using pseudo-observations of rainwater at the initial and end times of the data assimilation window. The results showed that the intensity of convection could be adjusted by assimilating appropriate observations of rainwater near the convection and that undesirable convection could be suppressed by assimilating small or no reflectivity. An assimilation experiment using actual observations of a local heavy rainfall in the Tokyo, Japan, metropolitan area was conducted with a horizontal resolution of 2 km. Precipitable water vapor derived from global positioning system data was assimilated at 5-min intervals within 30-min assimilation windows, and surface and wind profiler data were assimilated at 10-min intervals. Doppler radial wind and radar-reflectivity data below the elevation angle of 5.4° were assimilated at 1-min intervals. The 4DVAR assimilation reproduced a line-shaped rainband with a shape and intensity consistent with the observation. Assimilation of radar-reflectivity data intensified the rainband and suppressed false convection. The simulated rainband lasted for 1 h in the extended forecast and then gradually decayed. Sustaining the low-level convergence produced by northerly winds in the western part of the rainband was key to prolonging the predictability of the convective system.


2017 ◽  
Vol 17 (4B) ◽  
pp. 31-36
Author(s):  
Dang Hong Nhu ◽  
Nguyen Xuan Anh ◽  
Nguyen Binh Phong ◽  
Nguyen Dang Quang ◽  
Hiep Van Nguyen

In this study, the WRF model is used to investigate the role of Central Vietnam terrain on occurrence of the heavy rainfall event in November 1999 over Central Vietnam. Two model experiments with and without terrain were performed to examine the orographic blocking effects during the event. In the terrain experiment, the results from a three-day simulation show that the model reasonably well captures northeast monsoon circulation, tropical cyclones and the occurrence of heavy rainfall in Central Vietnam. The topography causes a high pressure anomaly intensifying northeast monsoon. When the terrain is removed, the three-day accumulated rainfall decreases approximately 75% in comparison with that in the terrain experiment. The terrain blocking and lifting effects in strong wind and moisture laden conditions combined with convergence circulation over open ocean are the main factors for occurrence of the heavy rainfall event.


MAUSAM ◽  
2021 ◽  
Vol 60 (3) ◽  
pp. 317-324
Author(s):  
M. MOHAPATRA ◽  
NARESH KUMAR ◽  
B. K. BANDYOPADHYAY

The 26th July 2005 exceptionally heavy rainfall event over Mumbai has been mainly attributed to a mesoscale low/vortex off Konkan coast and urban heat island (UHI) effect as demonstrated by various research groups. However, these studies are limited on observational evidence regarding the existence of the mesoscale vortex and UHI prior to and during this heavy rainfall event. Hence, a study has been undertaken to examine the existence of the mesoscale low off Konkan coast, which might have triggered this exceptionally heavy rainfall over Mumbai and the possible role of UHI effect over Mumbai on this heavy rainfall event. For this purpose the additional synoptic data from Mumbai high region and daily maximum and minimum temperatures over Mumbai region have been analysed. The analysis confirms the existence of a mesoscale low pressure area and isallobaric low to the west of Dahanu during 25th - 26th July 2005. The analysis of daily maximum and minimum temperatures over Mumbai region confirms the UHI effect during 25th -26th July, 2005.


Sign in / Sign up

Export Citation Format

Share Document