Exact travelling wave solutions of the (3+1)-dimensional mKdV-ZK equation and the (1+1)-dimensional compound KdVB equation using the new approach of generalized G ′ / G $\left (\boldsymbol { {G^{\prime }/G}} \right )$ -expansion method

Pramana ◽  
2014 ◽  
Vol 83 (3) ◽  
pp. 317-329 ◽  
Author(s):  
MD NUR ALAM ◽  
M ALI AKBAR ◽  
M FAZLUL HOQUE
Author(s):  
Figen Kangalgil

The investigation of the exact solutions of NLPDEs plays an im- portant role for the understanding of most nonlinear physical phenomena. Also, the exact solutions of this equations aid the numerical solvers to assess the correctness of their results. In this paper, (G'/G)-expansion method is pre- sented to construct exact solutions of the Perturbed Wadati-Segur-Ablowitz equation. Obtained the exact solutions are expressed by the hyperbolic, the trigonometric and the rational functions. All calculations have been made with the aid of Maple program. It is shown that the proposed algorithm is elemen- tary, e¤ective and has been used for many PDEs in mathematical physics.  


2016 ◽  
Vol 20 (3) ◽  
pp. 893-898 ◽  
Author(s):  
Yi Tian ◽  
Zai-Zai Yan

This paper considers a non-linear wave equation arising in fluid mechanics. The exact traveling wave solutions of this equation are given by using G'/G-expansion method. This process can be reduced to solve a system of determining equations, which is large and difficult. To reduce this process, we used Wu elimination method. Example shows that this method is effective.


2021 ◽  
Vol 10 (1) ◽  
pp. 272-281
Author(s):  
Hülya Durur ◽  
Asıf Yokuş ◽  
Kashif Ali Abro

Abstract Computational and travelling wave solutions provide significant improvements in accuracy and characterize novelty of imposed techniques. In this context, computational and travelling wave solutions have been traced out for Tzitzéica and Dodd-Bullough-Mikhailov equations by means of (1/G′)-expansion method. The different types of solutions have constructed for Tzitzéica and Dodd-Bullough-Mikhailov equations in hyperbolic form. Moreover, solution function of Tzitzéica and Dodd-Bullough-Mikhailov equations has been derived in the format of logarithmic nature. Since both equations contain exponential terms so the solutions produced are expected to be in logarithmic form. Traveling wave solutions are presented in different formats from the solutions introduced in the literature. The reliability, effectiveness and applicability of the (1/G′)-expansion method produced hyperbolic type solutions. For the sake of physical significance, contour graphs, two dimensional and three dimensional graphs have been depicted for stationary wave. Such graphical illustration has been contrasted for stationary wave verses traveling wave solutions. Our graphical comparative analysis suggests that imposed method is reliable and powerful method for obtaining exact solutions of nonlinear evolution equations.


2005 ◽  
Vol 60 (4) ◽  
pp. 221-228 ◽  
Author(s):  
Dengshan Wang ◽  
Hong-Qing Zhang

Abstract In this paper, with the aid of symbolic computation we improve the extended F-expansion method described in Chaos, Solitons and Fractals 22, 111 (2004) to solve the (2+1)-dimensional Korteweg de Vries equation. Using this method, we derive many exact non-travelling wave solutions. These are more general than the previous solutions derived with the extended F-expansion method. They include the Jacobi elliptic function, soliton-like trigonometric function solutions, and so on. Our method can be applied to other nonlinear evolution equations.


Sign in / Sign up

Export Citation Format

Share Document