Consequences of chemical reaction in temperature-dependent thermal conductivity fluid flow by a rotating disk with variable thickness

Pramana ◽  
2019 ◽  
Vol 93 (6) ◽  
Author(s):  
Maria Imtiaz ◽  
Fiza Shahid ◽  
Tasawar Hayat ◽  
Ahmed Alsaedi
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bai Yu ◽  
Muhammad Ramzan ◽  
Saima Riasat ◽  
Seifedine Kadry ◽  
Yu-Ming Chu ◽  
...  

AbstractThe nanofluids owing to their alluring attributes like enhanced thermal conductivity and better heat transfer characteristics have a vast variety of applications ranging from space technology to nuclear reactors etc. The present study highlights the Ostwald-de-Waele nanofluid flow past a rotating disk of variable thickness in a porous medium with a melting heat transfer phenomenon. The surface catalyzed reaction is added to the homogeneous-heterogeneous reaction that triggers the rate of the chemical reaction. The added feature of the variable thermal conductivity and the viscosity instead of their constant values also boosts the novelty of the undertaken problem. The modeled problem is erected in the form of a system of partial differential equations. Engaging similarity transformation, the set of ordinary differential equations are obtained. The coupled equations are numerically solved by using the bvp4c built-in MATLAB function. The drag coefficient and Nusselt number are plotted for arising parameters. The results revealed that increasing surface catalyzed parameter causes a decline in thermal profile more efficiently. Further, the power-law index is more influential than the variable thickness disk index. The numerical results show that variations in dimensionless thickness coefficient do not make any effect. However, increasing power-law index causing an upsurge in radial, axial, tangential, velocities, and thermal profile.


2020 ◽  
Vol 401 ◽  
pp. 148-163 ◽  
Author(s):  
G. Sarojamma ◽  
K. Sreelakshmi ◽  
P. Krishna Jyothi ◽  
P.V. Satya Narayana

In this report, the effects of homogeneous-heterogeneous autocatalytic chemical reaction together with the variable thermal conductivity in the Maxwell fluid flow due to nonlinear surface of variable thickness are investigated. Thermal radiation and heat generation / absorption effects are also incorporated in the analysis. Appropriate scaling analysis is implemented to reduce the mathematical model describing the physics of the problem in to a set of nonlinear differential equations and are subsequently solved computationally. Graphical illustrations indicating the effect of pertinent parameters on momentum, thermal and solutal boundary layers are presented and discussed. The study reveals that velocity distribution shows a decreasing (increasing) tendency for larger values of wall thickness parameter when the velocity power law index is less (greater) than unity. The concentration of the homogeneous bulk fluid with catalyst at the surface decreases with increasing chemical reaction rate parameters.


Sign in / Sign up

Export Citation Format

Share Document