Modelling and multiresponse optimization for minimizing burr height, thrust force and surface roughness in drilling of ferritic stainless steel

Sadhana ◽  
2020 ◽  
Vol 45 (1) ◽  
Author(s):  
Mustafa Günay ◽  
Tolga Meral
Author(s):  
Alper Uysal ◽  
◽  
Eshreb Dzhemilov ◽  
Ruslan Dzhemalyadinov ◽  
◽  
...  

Stainless steel materials have been used in many fields such as automotive, aviation, medical industries, etc. In addition, these materials are classified as difficult-to-cut materials due to low thermal conductivity and work-hardening tendency. Therefore, studies on machining of these materials have been performed in order to understand the basic of the process. In this study, surface roughness and burr height were investigated in MQL (Minimum Quantity Lubrication) milling of AISI 430 ferritic stainless steel. In MQL milling, commercial vegetable cutting fluid and MWCNT (Multi Walled Carbon Nanotube) reinforced vegetable cutting fluid were used. The milling experiments were also conducted under dry condition. In the experiments, uncoated WC (Tungsten Carbide) and TiN (Titanium Nitride) coated WC cutting inserts were used. Based on the experimental results, MQL method reduced the surface roughness and burr heights and better surfaces were obtained by using nanofluids in MQL method.


2019 ◽  
Vol 23 (1) ◽  
pp. 271-276
Author(s):  
T. Deepan Bharathi Kannan ◽  
B. Suresh Kumar ◽  
G. Rajesh Kannan ◽  
M. Umar ◽  
Mohammad Chand Khan

Abstract This work is aimed at developing relations between the pertinent variables that affect drilling process of stainless steel using artificial neural network. The experiments were conducted on vertical CNC machining centre. The parameters used were spindle speed and feed rate. The effect of machining parameters on entry burr height, exit burr height and surface roughness was experimentally evaluated for different spindle speeds and feed rates. A model was established between the drilling parameters and experimentally obtained data using ANN. The predicted values and measured values are fairly close, which indicates that the developed model can be effectively used to predict the burr height and surface roughness in drilling of stainless steel. Genetic algorithm (GA) technique was used in this work to identify the optimized drilling parameters. Confirmation test was conducted with the optimized parameters and it was found that confirmation test results were similar to that of GA-predicted output values.


2018 ◽  
Vol 791 ◽  
pp. 116-122
Author(s):  
K. Kamdani ◽  
A.A. Hamsah ◽  
N.H. Rafai ◽  
M.Z. Rahim ◽  
C.K. Wong ◽  
...  

Drilling is the metal cutting process that are widely used in industrial sector such as in aerospace, automotive and manufacturing to produce a various of durable parts. Stainless steels in general are regarded as difficult to machine materials due to their high tendency to work harden; their toughness and relatively low thermal conductivity. In this research, the experimental setup for the effect of various parameters on drill performance in term of cutting force and surface roughness. Stainless steel 316L used as workpiece and uncoated tungsten carbide drill bit as the tool. From the experimental investigation, the results show that internal coolant with helix angle of 40 and feed rate of 0.1 mm/rev condition is the best drilling condition in term of thrust force and surface roughness. By observation on experiment, MQL coolant condition give highest thrust force while internal coolant is best condition to have most minimum force. For internal coolant, MQL and external supply, the optimum helix angle to obtain low surface roughness is 15° and 40°.


Author(s):  
Adem Çiçek ◽  
Ilyas Uygur ◽  
Turgay Kıvak ◽  
Nursel Altan Özbek

In this paper, machinability of AISI 316 austenitic stainless steel was investigated using cryogenically treated and untreated high-speed steel (HSS) twist drills. Machinability of AISI 316 austenitic stainless steel was evaluated in terms of thrust force, tool life, surface roughness, and hole quality of the drilled holes. Experimental results showed from 14% to 218% improvements for treated tool lives. Thrust force, surface roughness, and hole quality are better with treated drills when compared with untreated drills. These improvements were mainly attributed to formation of fine and homogeneous carbide particles and transformation of retained austenite to martensite. Microhardness and microstructure observations verified these formations.


2021 ◽  
Author(s):  
Myoung Youp SONG

One of the candidates for metallic interconnects of solid oxide fuel cells is ferritic stainless steel, Crofer 22 APU. Ferritic stainless steel Crofer 22 APU specimens with different surface roughness were prepared by grinding with SiC powder papers of various grits and then thermally cycled in air. Variation in the microstructure of the samples having different roughness with thermal cycling was investigated. Polished Crofer 22 APU specimens after three and five thermal cycles had relatively flat oxide layers with thicknesses of about 13.8 and 17.9 μm, respectively. Micrographs of a trench made by milling with FIB (focused ion beam) for a Crofer 22 APU specimen ground with grit 80 SiC powder paper after 8 thermal cycles (total oxygen exposure time of 200 h at 1073 K), captured by ESB (energy selective back-scattering) and SE2 (type II secondary electrons), showed that the surface of the sample was very coarse and its oxide layer was undulated. In the oxide layer, the phase of the sublayer was Cr2O3, and that of the top layer was (Cr, Mn)3O4 spinel. The surface of the sample ground with grit 80 SiC powder paper was very rough after 60 thermal cycles (total oxygen exposure time of 1500 h at 1073 K). The polished Crofer 22 APU is a better applicant to an interconnect of SOFC than those with rougher surfaces.


2012 ◽  
Vol 63 ◽  
pp. 404-409 ◽  
Author(s):  
Sang Mok Lee ◽  
Wan Gyu Lee ◽  
Yeong Ho Kim ◽  
Ho Jang

Sign in / Sign up

Export Citation Format

Share Document