scholarly journals Effect of MWCNT on surface roughness and burr height in MQL milling of AISI 430 ferritic stainless steel

Author(s):  
Alper Uysal ◽  
◽  
Eshreb Dzhemilov ◽  
Ruslan Dzhemalyadinov ◽  
◽  
...  

Stainless steel materials have been used in many fields such as automotive, aviation, medical industries, etc. In addition, these materials are classified as difficult-to-cut materials due to low thermal conductivity and work-hardening tendency. Therefore, studies on machining of these materials have been performed in order to understand the basic of the process. In this study, surface roughness and burr height were investigated in MQL (Minimum Quantity Lubrication) milling of AISI 430 ferritic stainless steel. In MQL milling, commercial vegetable cutting fluid and MWCNT (Multi Walled Carbon Nanotube) reinforced vegetable cutting fluid were used. The milling experiments were also conducted under dry condition. In the experiments, uncoated WC (Tungsten Carbide) and TiN (Titanium Nitride) coated WC cutting inserts were used. Based on the experimental results, MQL method reduced the surface roughness and burr heights and better surfaces were obtained by using nanofluids in MQL method.

2021 ◽  
Vol 15 (2) ◽  
pp. 8042-8056
Author(s):  
Prashantha Kumar S T ◽  
Thirtha Prasada HP

Duplex stainless steel (DSS)-2205 comes under hard to machine material owing to its inherent properties but more applications in severe working conditions hence, selection of turning process parameters and suitable cutting fluids of DSS-2205 is essential. In the present work, investigate the performance of Deionized water, neat cut oil, and emulsified fluid on cutting temperature and surface roughness during turning of duplex stainless steel-2205 under minimum quantity lubrication technique. Based on a face-centered composite design, 20 experiments were conducted with varying speed, feed, and depth of cut in three levels for three different fluids. Analysis of variance (ANOVA) is used to identify significant parameters that affect the response. Numerical optimization was carried out under Desirability Function Analysis (DFA) for cutting temperature during deionized water cutting fluid for surface roughness during emulsified cutting fluid. Depth of cut is the significant factor for cutting temperature contribution is 74.83% during Deionized water as a fluid, and feed is the significant factor for surface roughness contribution is 93.57% during emulsified fluid. The optimum cutting parameters were determined for speed (50m/min), feed (0.051mm/rev) and depth of cut (0.4mm). Experimental results revealed that Deionized water gives better results for reduced the cutting temperature and emulsified fluid for surface roughness reduction.


2016 ◽  
Vol 68 (4) ◽  
pp. 446-451 ◽  
Author(s):  
Alper Uysal

Purpose In milling of stainless steel materials, various cutting tool failures such as flank wear, crater wear, cracks, chipping, etc. can be observed because of their work hardening tendency and low thermal conductivity. For this reason, this paper aims to develop some coolants and coatings to reduce these formations. However, further research should be performed to reach the desired level. Design/methodology/approach In this study, the initial flank wear rates of uncoated and titanium nitride-coated tungsten carbide cutting tools were investigated during the milling of AISI 430 ferritic stainless steel. The milling experiments were conducted under dry and minimum quantity lubrication (MQL) conditions. Nano graphene reinforced vegetable cutting fluid was prepared and applied by the MQL system. The mixture ratios of nanofluids were selected as 1 and 2 wt.%, and MQL flow rates were adjusted at 20 and 40 ml/h. Findings It was observed that MQL milling with nano graphene reinforced cutting fluid has advantages over dry milling and MQL milling with pure cutting fluid in terms of the initial flank wear. Originality/value This paper contains new and significant information adequate to justify publication. MQL is a new method for vegetable cutting fluid containing nano graphene particles.


Author(s):  
A.M. Zetty Akhtar ◽  
M.M. Rahman ◽  
K. Kadirgama ◽  
M.A. Maleque

This paper presents the findings of the stability, thermal conductivity and viscosity of CNTs (doped with 10 wt% graphene)- TiO2 hybrid nanofluids under various concentrations. While the usage of cutting fluid in machining operation is necessary for removing the heat generated at the cutting zone, the excessive use of it could lead to environmental and health issue to the operators. Therefore, the minimum quantity lubrication (MQL) to replace the conventional flooding was introduced. The MQL method minimises the usage of cutting fluid as a step to achieve a cleaner environment and sustainable machining. However, the low thermal conductivity of the base fluid in the MQL system caused the insufficient removal of heat generated in the cutting zone. Addition of nanoparticles to the base fluid was then introduced to enhance the performance of cutting fluids. The ethylene glycol used as the base fluid, titanium dioxide (TiO2) and carbon nanotubes (CNTs) nanoparticle mixed to produce nanofluids with concentrations of 0.02 to 0.1 wt.% with an interval of 0.02 wt%. The mixing ratio of TiO2: CNTs was 90:10 and ratio of SDBS (surfactant): CNTs was 10:1. The stability of nanofluid checked using observation method and zeta potential analysis. The thermal conductivity and viscosity of suspension were measured at a temperature range between 30˚C to 70˚C (with increment of 10˚C) to determine the relationship between concentration and temperature on nanofluid’s thermal physical properties. Based on the results obtained, zeta potential value for nanofluid range from -50 to -70 mV indicates a good stability of the suspension. Thermal conductivity of nanofluid increases as an increase of temperature and enhancement ratio is within the range of 1.51 to 4.53 compared to the base fluid. Meanwhile, the viscosity of nanofluid shows decrements with an increase of the temperature remarks significant advantage in pumping power. The developed nanofluid in this study found to be stable with enhanced thermal conductivity and decrease in viscosity, which at once make it possible to be use as nanolubricant in machining operation.


2020 ◽  
Vol 38 (11A) ◽  
pp. 1593-1601
Author(s):  
Mohammed H. Shaker ◽  
Salah K. Jawad ◽  
Maan A. Tawfiq

This research studied the influence of cutting fluids and cutting parameters on the surface roughness for stainless steel worked by turning machine in dry and wet cutting cases. The work was done with different cutting speeds, and feed rates with a fixed depth of cutting. During the machining process, heat was generated and effects of higher surface roughness of work material. In this study, the effects of some cutting fluids, and dry cutting on surface roughness have been examined in turning of AISI316 stainless steel material. Sodium Lauryl Ether Sulfate (SLES) instead of other soluble oils has been used and compared to dry machining processes. Experiments have been performed at four cutting speeds (60, 95, 155, 240) m/min, feed rates (0.065, 0.08, 0.096, 0.114) mm/rev. and constant depth of cut (0.5) mm. The amount of decrease in Ra after the used suggested mixture arrived at (0.21µm), while Ra exceeded (1µm) in case of soluble oils This means the suggested mixture gave the best results of lubricating properties than other cases.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Shahin Haghnazari ◽  
Vahid Abedini

AbstractThis paper presents an effort to model the process parameters involved in turning of alloy steel AISI 4340 workpiece material with Al2O3 and CuO hybrid nanofluids using the minimum quantity lubrication (MQL) method. In this paper, the effect of mixing two nanoparticles (Al2O3 and CuO) with different weight percent in environmentally friendly water-based cutting fluid, the rotational speed, and the feed rate has been investigated on the surface roughness and the machining forces using the response surface method. The results of the experiments show that the hybrid nanofluid containing 0.75 CuO with 0.25 Al2O3 has the best output for the machining forces and the surface roughness. Also, in the best composition of the nanoparticles (0.75 CuO with 0.25 Al2O3), the lowest value of machining forces has been achieved at a feed rate of 0.08 mm per revolution and the rotational speed 1000 rpm as well as the lowest value of the surface roughness at a feed rate of 0.08 mm per revolution and the rotational speed 710 rpm.


Sign in / Sign up

Export Citation Format

Share Document