Optimal control of pump rotational speed in filling and emptying a reservoir: minimum energy consumption with fixed time

2016 ◽  
Vol 9 (6) ◽  
pp. 1461-1474 ◽  
Author(s):  
Matti Lindstedt ◽  
Reijo Karvinen
Machines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 70
Author(s):  
Vladimir Dotsenko ◽  
Roman Prokudin ◽  
Alexander Litvinenko

The article deals with the optimal control of the positional electric drive of the stator element of a segment-type wind turbine. The calculation options charts current in the assumption of the minimum energy consumption and the implementation of line chart current using the phenomenon of capacitor discharge. The analysis of the implementation is expressed in a jump-like change in current and a triangular graph of the speed change. This article deals with small capacity synchronous wind turbine generators with a segment type stator. These units have the possibility of intentionally changing the air gap between the rotor and stator. This allows: (1) Reduce the starting torque on the rotor shaft, which will allow the rotor to pick up at low wind speeds. (2) Equivalent to change of air gap in this case is change of excitation of synchronous generators. Thus, the purpose of the article is to consider a method of excitation of generators in a segmented design, by controlling the gap with the electric drive, while providing control should be carried out with minimal losses.


Author(s):  
Hadi Abbas ◽  
Youngki Kim ◽  
Jason B. Siegel ◽  
Denise M. Rizzo

This paper presents a study of energy-efficient operation of vehicles with electrified powertrains leveraging route information, such as road grades, to adjust the speed trajectory. First, Pontryagin’s Maximum Principle (PMP) is applied to derive necessary conditions and to determine the possible operating modes. The analysis shows that only 5 modes are required to achieve minimum energy consumption; full propulsion, cruising, coasting, full regeneration, and full regeneration with conventional braking. The minimum energy consumption problem is reformulated and solved in the distance domain using Dynamic Programming to optimize speed profiles. A case study is shown for a light weight military robot including road grades. For this system, a tradeoff between energy consumption and trip time was found. The optimal cycle uses 20% less energy for the same trip duration, or could reduce the travel time by 14% with the same energy consumption compared to the baseline operation.


Sign in / Sign up

Export Citation Format

Share Document