Estimation of optimum supply of shared cars based on personal travel behaviors in condition of minimum energy consumption

Author(s):  
Yanhong Yin ◽  
Han Wang ◽  
Jimin Xiong ◽  
Yufeng Zhu ◽  
Zhanfeng Tang
Author(s):  
Hadi Abbas ◽  
Youngki Kim ◽  
Jason B. Siegel ◽  
Denise M. Rizzo

This paper presents a study of energy-efficient operation of vehicles with electrified powertrains leveraging route information, such as road grades, to adjust the speed trajectory. First, Pontryagin’s Maximum Principle (PMP) is applied to derive necessary conditions and to determine the possible operating modes. The analysis shows that only 5 modes are required to achieve minimum energy consumption; full propulsion, cruising, coasting, full regeneration, and full regeneration with conventional braking. The minimum energy consumption problem is reformulated and solved in the distance domain using Dynamic Programming to optimize speed profiles. A case study is shown for a light weight military robot including road grades. For this system, a tradeoff between energy consumption and trip time was found. The optimal cycle uses 20% less energy for the same trip duration, or could reduce the travel time by 14% with the same energy consumption compared to the baseline operation.


2021 ◽  
Vol 13 (23) ◽  
pp. 13016
Author(s):  
Rami Naimi ◽  
Maroua Nouiri ◽  
Olivier Cardin

The flexible job shop problem (FJSP) has been studied in recent decades due to its dynamic and uncertain nature. Responding to a system’s perturbation in an intelligent way and with minimum energy consumption variation is an important matter. Fortunately, thanks to the development of artificial intelligence and machine learning, a lot of researchers are using these new techniques to solve the rescheduling problem in a flexible job shop. Reinforcement learning, which is a popular approach in artificial intelligence, is often used in rescheduling. This article presents a Q-learning rescheduling approach to the flexible job shop problem combining energy and productivity objectives in a context of machine failure. First, a genetic algorithm was adopted to generate the initial predictive schedule, and then rescheduling strategies were developed to handle machine failures. As the system should be capable of reacting quickly to unexpected events, a multi-objective Q-learning algorithm is proposed and trained to select the optimal rescheduling methods that minimize the makespan and the energy consumption variation at the same time. This approach was conducted on benchmark instances to evaluate its performance.


2013 ◽  
Vol 689 ◽  
pp. 250-253 ◽  
Author(s):  
Mohamed M. Mahdy ◽  
Marialena Nikolopoulou

The objective of this research is to study the effect of using different material specifications for the external walls on the cost of the energy consumption for achieving internal thermal comfort. We refer to this as operation running cost, which in turn is compared to initial construction cost for each type of the used external walls. In order to achieve this objective, dynamic thermal simulation were carried out for four different types of external walls – commonly used in Egypt – in two different sets of cooling: natural ventilation and mechanical means. Experiments recommend that using the Egyptian Residential Energy Code (EREC) to achieve inner thermal comfort with the minimum energy consumption (consequently the minimum CO2 emissions) and the minimum running cost as well.


2021 ◽  
pp. 66-71
Author(s):  
NIKOLAY V. TSUGLENOK ◽  

The authors have determined the conditions for the eff ective use of modern electrifi ed circular sprinklers in the central part of Russia. Their designs are chosen depending on the agrotechnical requirements for irrigation, including the change in the diameter of the water distribution pipeline. However, when the diameter of the pipeline changes, the load on the electric drive of the support trolleys of the sprinkler changes too, which leads to a corresponding change in energy consumption. In turn, this also changes the load of the water supply pump. The paper sets the task of determining the optimal change in the diameter of pipelines according to the criterion of minimum energy consumption, taking into account a number of assumptions. The authors have analyzed the relationship between the change in the load on the electric drive of the sprinkler support trolley and the change in the diameter of one sprinkler section pipeline. It has been found that a decrease in the diameter by 27% (for example, the transition of the diameter of 219 mm to the diameter of 159 mm) leads to a decrease in the load on the electric drive by 38%. However, this also leads to an increase in the head loss in the water supply pump motor and, respectively, to an increase in the load and energy consumption by 0.8…3.8%. The eff ect is initially obvious, but the power of the electric motor of the water supply pump is 10…25 times higher than that of the electric motor of the sprinkler support trolley. Based on the similarity coeffi cients of the irrigation components (water supply and water distribution), the relationship beteween the total energy consumption and the change in the diameter of the water distribution pipeline has been obtained. By diff erentiating the obtained function, the dependence of the value of the optimal diameter for specifi c operating conditions is also obtained. Graphs of the relationship between energy consumption and the change in diameter have been determined, taking into account some restrictions: pump supply, static pressure, and the number of the sprinkler sections.


Sign in / Sign up

Export Citation Format

Share Document