pulverized fuel
Recently Published Documents


TOTAL DOCUMENTS

414
(FIVE YEARS 36)

H-INDEX

28
(FIVE YEARS 4)

2022 ◽  
Vol 228 ◽  
pp. 107142
Author(s):  
Marcelo Dal Belo Takehara ◽  
Ángel David García Llamas ◽  
Muhammad Aqib Chishty ◽  
Kentaro Umeki ◽  
Rikard Gebart

Author(s):  
Hongliang Qi ◽  
Rui Sun ◽  
Jiangbo Peng ◽  
Xin Yu ◽  
Jiangquan Wu ◽  
...  

Author(s):  
Yurii Stupak

The analysis of scientific publications containing information about the equipment and methods of modeling the process of pulverized fuel combustion is carried out. The basic requirements for ensuring the reliability of research results are formulated. The conclusion is made about the possibility and expediency of using installations of the type "vertical tubular furnace" to find ways to increase the completeness of pulverized coal combustion in the blast furnaces raceway. Emphasis is placed on the importance of ensuring a uniform supply of fuel to the reaction zone, a time-stable ratio of fuel and oxidant, qualitative technical analysis of the source fuel, as well as the residue after its combustion. Based on a comparative analysis of methods for determining the completeness of burnout of pulverized fuel used in such studies, a convenient formula for its calculations is proposed.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 515
Author(s):  
Thomas Freudenmann ◽  
Hans-Joachim Gehrmann ◽  
Krasimir Aleksandrov ◽  
Mohanad El-Haji ◽  
Dieter Stapf

This paper describes a procedure and an IT product that combine numerical models, expert knowledge, and data-based models through artificial intelligence (AI)-based hybrid models to enable the integrated control, optimization, and monitoring of processes and plants. The working principle of the hybrid model is demonstrated by NOx reduction through guided oscillating combustion at the pulverized fuel boiler pilot incineration plant at the Institute for Technical Chemistry, Karlsruhe Institute of Technology. The presented example refers to coal firing, but the approach can be easily applied to any other type of nitrogen-containing solid fuel. The need for a reduction in operation and maintenance costs for biomass-fired plants is huge, especially in the frame of emission reductions and, in the case of Germany, the potential loss of funding as a result of the Renewable Energy Law (Erneuerbare-Energien-Gesetz) for plants older than 20 years. Other social aspects, such as the departure of experienced personnel may be another reason for the increasing demand for data mining and the use of artificial intelligence (AI).


Inventions ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 9
Author(s):  
Nicklas Jolibois ◽  
Krasimir Aleksandrov ◽  
Manuela Hauser ◽  
Dieter Stapf ◽  
Helmut Seifert ◽  
...  

Thermal power plants in different fields are regularly adapted to the state-of-the-art emissions standards, applying “The Best Available Techniques Reference”. Since 2016 in the power plant area new, more stringent limits for power plant units with a thermal output of more than 300 MW operated with black coal are valid. Usually, in order to reach the new limits e.g., for NOX emissions, downstream reduction processes (Selective Non-Catalytic Reduction, SNCR or Selective Catalytic Reduction) are applied, which use of operating resources (essentially ammonia water) thereby increase. By the means of an experimentally validated process, by which pulverized fuel is fed by oscillation through a swirl burner into a pilot combustion chamber with a thermal output of 2.5 MW, nitrogen oxides can be reduced without further activities, for instance from 450 mg/mN3 in non-oscillation operation mode (0 Hz) to 280 mg/mN3 in oscillation operation mode (3.5 Hz), normalized to an O2–content of 6% each. These findings were patented in EP3084300. Particularly promising are the experiments which utilize oscillation of a large portion of the burn out air instead of the fuel in order to minimize the fatigue of the pulverized fuel oscillator, amongst others. Thereby, the nitrogen conversion rate, which describes the ratio of NOX to fuel nitrogen, including thermal NOX can be reduced from 26% for non-oscillation operation mode down to 16%. The present findings show that fuel oscillation alone is not sufficient to achieve nitrogen oxides concentrations below the legislative values. Therefore, a combination of different primary (and secondary) measures is required. This paper presents the experimental results for oscillating coal-dust firing. Furthermore, an expert model based on a multivariate regression is developed to evaluate the experimental results.


2021 ◽  
Vol 347 ◽  
pp. 00004
Author(s):  
Brad Rawlins ◽  
Ryno Laubscher ◽  
Pieter Rousseau

The use of a thermal non-equilibrium Eulerian-Eulerian model for the simulation of a 620 MWe power boiler is proposed for capturing the combustion and radiative heat transfer found in the pulverized fuel systems. The models eliminates the use of a Lagrangian reference frame in tracking solid fuel particles thereby reducing the computational expense and time. The model solves the scalar transport for the particle mass, energy and radiation interactions between the pseudo-particle and continuous phases. The goal is to apply the modelling approach to generate a simulation database for different load cases and firing conditions which in turn will be used to study flexible operation. The model is validated against both numerical and applicable site data measurements. It is shown that the model is able to adequately resolve the furnace and superheater wall heat fluxes. Additionally the resolution of the flow field, combustion dynamics and wall fluxes are demonstrated for both an 80% and 60% operational loads. Moreover, it is shown that the Eulerian-Eulerian model results in approximately a 30% computational resource reduction when compared to traditional modelling approaches.


Sign in / Sign up

Export Citation Format

Share Document