scholarly journals VMKDO: Verifiable multi-keyword search over encrypted cloud data for dynamic data-owner

2016 ◽  
Vol 11 (2) ◽  
pp. 287-297 ◽  
Author(s):  
Yinbin Miao ◽  
Jianfeng Ma ◽  
Ximeng Liu ◽  
Zhiquan Liu ◽  
Limin Shen ◽  
...  
Author(s):  
Yinbin Miao ◽  
Jianfeng Ma ◽  
Fushan Wei ◽  
Kai Zhang ◽  
Zhiquan Liu

Author(s):  
Zhiquan Liu ◽  
Yinbin Miao ◽  
Jianfeng Ma ◽  
Fushan Wei ◽  
Kai Zhang

2021 ◽  
Vol 11 (19) ◽  
pp. 8841
Author(s):  
JoonYoung Lee ◽  
MyeongHyun Kim ◽  
JiHyeon Oh ◽  
YoungHo Park ◽  
KiSung Park ◽  
...  

As the amount of data generated in various distributed environments is rapidly increasing, cloud servers and computing technologies are attracting considerable attention. However, the cloud server has privacy issues, including personal information and requires the help of a Trusted Third Party (TTP) for data sharing. However, because the amount of data generated and value increases, the data owner who produces data must become the subject of data sharing. In this study, we use key aggregate searchable encryption (KASE) technology, which enables keyword search, to efficiently share data without using TTP. The traditional KASE scheme approach only discusses the authority delegation from the data owner to another user. The traditional KASE scheme approach only discusses delegation of authority from the data owner to another user. However, if the delegated entity cannot perform time-critical tasks because the shared data are unavailable, the delegate must further delegate the rights given to other users. Consequently, this paper proposes a new KASE scheme that enables multi-delegation without TTP and includes an authentication technique between the user and the server. After that, we perform informal and formal analysis using BAN logic and AVISPA for security evaluation, and compare the security and performance aspects with existing schemes.


Author(s):  
VINITHA S P ◽  
GURUPRASAD E

Cloud computing has been envisioned as the next generation architecture of IT enterprise. It moves the application software and databases to the centralized large data centers where management of data and services may not be fully trustworthy. This unique paradigm brings out many new security challenges like, maintaining correctness and integrity of data in cloud. Integrity of cloud data may be lost due to unauthorized access, modification or deletion of data. Lacking of availability of data may be due to the cloud service providers (CSP), in order to increase their margin of profit by reducing the cost, CSP may discard rarely accessed data without detecting in timely fashion. To overcome above issues, flexible distributed storage, token utilizing, signature creations used to ensure integrity of data, auditing mechanism used assists in maintaining the correctness of data and also locating, identifying of server where exactly the data has been corrupted and also dependability and availability of data achieved through distributed storage of data in cloud. Further in order to ensure authorized access to cloud data a admin module has been proposed in our previous conference paper, which prevents unauthorized users from accessing data and also selective storage scheme based on different parameters of cloud servers proposed in previous paper, in order to provide efficient storage of data in the cloud. In order to provide more efficiency in this paper dynamic data operations are supported such as updating, deletion and addition of data.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Amr M. Sauber ◽  
Passent M. El-Kafrawy ◽  
Amr F. Shawish ◽  
Mohamed A. Amin ◽  
Ismail M. Hagag

The main goal of any data storage model on the cloud is accessing data in an easy way without risking its security. A security consideration is a major aspect in any cloud data storage model to provide safety and efficiency. In this paper, we propose a secure data protection model over the cloud. The proposed model presents a solution to some security issues of cloud such as data protection from any violations and protection from a fake authorized identity user, which adversely affects the security of the cloud. This paper includes multiple issues and challenges with cloud computing that impairs security and privacy of data. It presents the threats and attacks that affect data residing in the cloud. Our proposed model provides the benefits and effectiveness of security in cloud computing such as enhancement of the encryption of data in the cloud. It provides security and scalability of data sharing for users on the cloud computing. Our model achieves the security functions over cloud computing such as identification and authentication, authorization, and encryption. Also, this model protects the system from any fake data owner who enters malicious information that may destroy the main goal of cloud services. We develop the one-time password (OTP) as a logging technique and uploading technique to protect users and data owners from any fake unauthorized access to the cloud. We implement our model using a simulation of the model called Next Generation Secure Cloud Server (NG-Cloud). These results increase the security protection techniques for end user and data owner from fake user and fake data owner in the cloud.


2022 ◽  
pp. 107-131
Author(s):  
Dhruti P. Sharma ◽  
Devesh C. Jinwala

E-health is a cloud-based system to store and share medical data with the stakeholders. From a security perspective, the stored data are in encrypted form that could further be searched by the stakeholders through searchable encryption (SE). Practically, an e-health system with support of multiple stakeholders (that may work as either data owner [writer] or user [reader]) along with the provision of multi-keyword search is desirable. However, the existing SE schemes either support multi-keyword search in multi-reader setting or offer multi-writer, multi-reader mechanism along with single-keyword search only. This chapter proposes a multi-keyword SE for an e-health system in multi-writer multi-reader setting. With this scheme, any registered writer could share data with any registered reader with optimal storage-computational overhead on writer. The proposed scheme offers conjunctive search with optimal search complexity at server. It also ensures security to medical records and privacy of keywords. The theoretical and empirical analysis demonstrates the effectiveness of the proposed work.


Sign in / Sign up

Export Citation Format

Share Document