scholarly journals Post-exercise cold water immersion does not alter high intensity interval training-induced exercise performance and Hsp72 responses, but enhances mitochondrial markers

2016 ◽  
Vol 21 (5) ◽  
pp. 793-804 ◽  
Author(s):  
Paula Fernandes Aguiar ◽  
Sílvia Mourão Magalhães ◽  
Ivana Alice Teixeira Fonseca ◽  
Vanessa Batista da Costa Santos ◽  
Mariana Aguiar de Matos ◽  
...  
2020 ◽  
Vol 45 (1) ◽  
pp. 101-111 ◽  
Author(s):  
Flávio de Castro Magalhães ◽  
Paula Fernandes Aguiar ◽  
Rosalina Tossige-Gomes ◽  
Sílvia Mourão Magalhães ◽  
Vinícius de Oliveira Ottone ◽  
...  

High-intensity interval training (HIIT) induces vascular adaptations that might be attenuated by postexercise cold-water immersion (CWI). Circulating angiogenic cells (CAC) participate in the vascular adaptations and circulating endothelial cells (CEC) indicate endothelial damage. CAC and CEC are involved in vascular adaptation. Therefore, the aim of the study was to investigate postexercise CWI during HIIT on CAC and CEC and on muscle angiogenesis-related molecules. Seventeen male subjects performed 13 HIIT sessions followed by 15 min of passive recovery (n = 9) or CWI at 10 °C (n = 8). HIIT comprised cycling (8–12 bouts, 90%–110% peak power). The first and the thirteenth sessions were similar (8 bouts at 90% of peak power). Venous blood was drawn before exercise (baseline) and after the recovery strategy (postrecovery) in the first (pretraining) and in the thirteenth (post-training) sessions. For CAC and CEC identification lymphocyte surface markers (CD133, CD34, and VEGFR2) were used. Vastus lateralis muscle biopsies were performed pre- and post-training for protein (p-eNOSser1177) and gene (VEGF and HIF-1) expression analysis related to angiogenesis. CAC was not affected by HIIT or postexercise CWI. Postexercise CWI increased acute and baseline CEC number. Angiogenic protein and genes were not differently modulated by post-CWI. HIIT followed by either recovery strategy did not alter CAC number. Postexercise CWI increased a marker of endothelial damage both acutely and chronically, suggesting that this postexercise recovery strategy might cause endothelial damage. Novelty HIIT followed by CWI did not alter CAC. HIIT followed by CWI increased CEC. Postexercise CWI might cause endothelial damage.


2021 ◽  
Vol 3 ◽  
Author(s):  
Mohammed Ihsan ◽  
Chris R. Abbiss ◽  
Robert Allan

In the last decade, cold water immersion (CWI) has emerged as one of the most popular post-exercise recovery strategies utilized amongst athletes during training and competition. Following earlier research on the effects of CWI on the recovery of exercise performance and associated mechanisms, the recent focus has been on how CWI might influence adaptations to exercise. This line of enquiry stems from classical work demonstrating improved endurance and mitochondrial development in rodents exposed to repeated cold exposures. Moreover, there was strong rationale that CWI might enhance adaptations to exercise, given the discovery, and central role of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) in both cold- and exercise-induced oxidative adaptations. Research on adaptations to post-exercise CWI have generally indicated a mode-dependant effect, where resistance training adaptations were diminished, whilst aerobic exercise performance seems unaffected but demonstrates premise for enhancement. However, the general suitability of CWI as a recovery modality has been the focus of considerable debate, primarily given the dampening effect on hypertrophy gains. In this mini-review, we highlight the key mechanisms surrounding CWI and endurance exercise adaptations, reiterating the potential for CWI to enhance endurance performance, with support from classical and contemporary works. This review also discusses the implications and insights (with regards to endurance and strength adaptations) gathered from recent studies examining the longer-term effects of CWI on training performance and recovery. Lastly, a periodized approach to recovery is proposed, where the use of CWI may be incorporated during competition or intensified training, whilst strategically avoiding periods following training focused on improving muscle strength or hypertrophy.


Author(s):  
Andrew J.R. Cochran ◽  
Frank Myslik ◽  
Martin J. MacInnis ◽  
Michael E. Percival ◽  
David Bishop ◽  
...  

Commencing some training sessions with reduced carbohydrate (CHO) availability has been shown to enhance skeletal muscle adaptations, but the effect on exercise performance is less clear. We examined whether restricting CHO intake between twice daily sessions of high-intensity interval training (HIIT) augments improvements in exercise performance and mitochondrial content. Eighteen active but not highly trained subjects (peak oxygen uptake [VO2peak] = 44 ± 9 ml/kg/min), matched for age, sex, and fitness, were randomly allocated to two groups. On each of 6 days over 2 weeks, subjects completed two training sessions, each consisting of 5 × 4-min cycling intervals (60% of peak power), interspersed by 2 min of recovery. Subjects ingested either 195 g of CHO (HI-HI group: ~2.3 g/kg) or 17 g of CHO (HI-LO group: ~0.3 g/kg) during the 3-hr period between sessions. The training-induced improvement in 250-kJ time trial performance was greater (p = .02) in the HI-LO group (211 ± 66 W to 244 ± 75 W) compared with the HI-HI group (203 ± 53 W to 219 ± 60 W); however, the increases in mitochondrial content was similar between groups, as reflected by similar increases in citrate synthase maximal activity, citrate synthase protein content and cytochrome c oxidase subunit IV protein content (p > .05 for interaction terms). This is the first study to show that a short-term “train low, compete high” intervention can improve whole-body exercise capacity. Further research is needed to determine whether this type of manipulation can also enhance performance in highly-trained subjects.


2011 ◽  
Vol 6 (1) ◽  
pp. 58-69 ◽  
Author(s):  
Llion A. Roberts ◽  
Kris Beattie ◽  
Graeme L. Close ◽  
James P. Morton

Purpose:To test the hypothesis that antioxidants can attenuate high-intensity interval training–induced improvements in exercise performance.Methods:Two groups of recreationally active males performed a high-intensity interval running protocol, four times per week for 4 wk. Group 1 (n = 8) consumed 1 g of vitamin C daily throughout the training period, whereas Group 2 (n = 7) consumed a visually identical placebo. Pre- and posttraining, subjects were assessed for VO2max, 10 km time trial, running economy at 12 km/h and distance run on the YoYo intermittent recovery tests level 1 and 2 (YoYoIRT1/2). Subjects also performed a 60 min run before and after training at a running velocity of 65% of pretraining VO2max so as to assess training-induced changes in substrate oxidation rates.Results:Training improved (P < .0005) VO2max, 10 km time trial, running economy, YoYoIRT1 and YoYoIRT2 in both groups, although there was no difference (P = .31, 0.29, 0.24, 0.76 and 0.59) between groups in the magnitude of training-induced improvements in any of the aforementioned parameters. Similarly, training also decreased (P < .0005) mean carbohydrate and increased mean fat oxidation rates during submaximal exercise in both groups, although no differences (P = .98 and 0.94) existed between training conditions.Conclusions:Daily oral consumption of 1 g of vitamin C during a 4 wk high-intensity interval training period does not impair training-induced improvements in the exercise performance of recreationally active males.


Sign in / Sign up

Export Citation Format

Share Document