An In Vitro Analysis of Pattern Cell Migration of Equine Adipose Derived Mesenchymal Stem Cells (EqASCs) Using Iron Oxide Nanoparticles (IO) in Static Magnetic Field

2015 ◽  
Vol 8 (4) ◽  
pp. 566-576 ◽  
Author(s):  
Monika Marędziak ◽  
Krzysztof Marycz ◽  
Agnieszka Śmieszek ◽  
Daniel Lewandowski
2019 ◽  
Vol 9 (16) ◽  
pp. 3259 ◽  
Author(s):  
Sung-Kyu Kim ◽  
Dong-Kyu Lee ◽  
Hyung-Ju Lim ◽  
Uk Sim

Spinal cord injuries (SCI) are well thought to be a crucial issue that roots various side effects for a patient during their entire lifetime. Although therapeutical methods to resolve the SCI are limited, stem cell therapy is determined to be a resolving factor since it possesses the ability to induce the neurogenic differentiation and the paracrine effect. However, stem cells are difficult to inject directly into the lesion, so they must be carefully guided through the spinal canal. Therefore, superparamagnetic iron oxide nanoparticles (SPIONs) are introduced as an instigator that makes the cells respond to the applied magnetic field. This study intends to report the synthesis strategy to develop SPIONs that could be used to treat the injury site by an applied magnetic field. SPION-internalized D1 Mesenchymal stem cells (MSCs) are observed consistently using a confocal fluorescence microscope to analyze the toxicity, maintenance, and monitoring points of intracellular SPIONs. The prepared SPIONs are much anticipated to increase the migration efficiency using magnetism, which was not cytotoxic. Hence, the prepared SPIONs can adeptly target the damaged neural tissue to promote tissue regeneration and treat nervous system disorders. This primary study stands as a focal point to solve SCI by stem cell migration effectively.


2018 ◽  
Vol 18 ◽  
Author(s):  
Chaitra Venugopal ◽  
Christopher Shamir ◽  
Sivapriya Senthilkumar ◽  
Janitri Venkatachala Babu ◽  
Peedikayil Kurien Sonu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document