Cellular and Molecular Bioengineering
Latest Publications


TOTAL DOCUMENTS

707
(FIVE YEARS 147)

H-INDEX

38
(FIVE YEARS 5)

Published By Springer-Verlag

1865-5033, 1865-5025

Author(s):  
Kenneth F. Fuh ◽  
Jessica Withell ◽  
Robert D. Shepherd ◽  
Kristina D. Rinker

Abstract Introduction S100 proteins are intracellular calcium ion sensors that participate in cellular processes, some of which are involved in normal breast functioning and breast cancer development. Despite several S100 genes being overexpressed in breast cancer, their roles during disease development remain elusive. Human mammary epithelial cells (HMECs) can be exposed to fluid shear stresses and implications of such interactions have not been previously studied. The goal of this study was to analyze expression profiles of S100 genes upon exposing HMECs to fluid flow. Methods HMECs and breast cancer cell lines were exposed to fluid flow in a parallel-plate bioreactor system. Changes in gene expression were quantified using microarrays and qPCR, gene-gene interactions were elucidated using network analysis, and key modified genes were examined in three independent clinical datasets. Results S100 genes were among the most upregulated genes upon flow stimulation. Network analysis revealed interactions between upregulated transcripts, including interactions between S100P, S100PBP, S100A4, S100A7, S100A8 and S100A9. Overexpression of S100s was also observed in patients with early stage breast cancer compared to normal breast tissue, and in most breast cancer patients. Finally, survival analysis revealed reduced survival times for patients with elevated expression of S100A7 and S100P. Conclusion This study shows that exposing HMECs to fluid flow upregulates genes identified clinically to be overexpressed during breast cancer development, including S100A7 and S100P. These findings are the first to show that S100 genes are flow-responsive and might be participating in a fundamental adaptation pathway in normal tissue that is also active in breast cancer.


Author(s):  
M. F. A. Karel ◽  
T. P. Lemmens ◽  
B. M. E. Tullemans ◽  
S. J. H. Wielders ◽  
E. Gubbins ◽  
...  

Abstract Introduction Studying arterial thrombus formation by in vitro flow assays is a widely used approach. Incorporating human atherosclerotic plaque material as a thrombogenic surface in these assays represents a method to model the pathophysiological environment of thrombus formation upon plaque disruption. Up until now, achieving a homogeneous coating of plaque material and subsequent reproducible platelet adhesion has been challenging. Here, we characterized a novel method for coating of plaque material on glass coverslips for use in thrombosis microfluidic assays. Methods A homogenate of human atherosclerotic plaques was coated on glass coverslips by conventional manual droplet coating or by spin coating. Prior to coating, a subset of coverslips was plasma treated. Water contact angle measurements were performed as an indicator for the hydrophilicity of the coverslips. Homogeneity of plaque coatings was determined using profilometric analysis and scanning electron microscopy. Thrombogenicity of the plaque material was assessed in real time by microscopic imaging while perfusing whole blood at a shear rate of 1500 s−1 over the plaque material. Results Plasma treatment of glass coverslips, prior to spin coating with plaque material, increased the hydrophilicity of the coverslip compared to no plasma treatment. The most homogeneous plaque coating and highest platelet adhesion was obtained upon plasma treatment followed by spin coating of the plaque material. Manual plaque coating on non-plasma treated coverslips yielded lowest coating homogeneity and platelet adhesion and activation. Conclusion Spin coating of atherosclerotic plaque material on plasma treated coverslips leads to a more homogenous coating and improved platelet adhesion to the plaque when compared to conventional droplet coating on non-plasma treated coverslips. These properties are beneficial in ensuring the quality and reproducibility of flow experiments.


Author(s):  
Arvin H. Soepriatna ◽  
Tae Yun Kim ◽  
Mark C. Daley ◽  
Elena Song ◽  
Bum-Rak Choi ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document