Applications of network analysis and multi-objective genetic algorithm for selecting optimal water quality sensor locations in water distribution networks

2015 ◽  
Vol 19 (7) ◽  
pp. 2333-2344 ◽  
Author(s):  
Do Guen Yoo ◽  
Gunhui Chung ◽  
Ali Sadollah ◽  
Joong Hoon Kim
2020 ◽  
Vol 20 (7) ◽  
pp. 2630-2647
Author(s):  
Mohammad Solgi ◽  
Omid Bozorg-Haddad ◽  
Hugo A. Loáiciga

Abstract Intermittent operation of water distribution networks (WDNs) is an undesirable yet inevitable strategy under some circumstances such as droughts, development, electricity blackouts, and water pollution, mostly in developing countries. Intermittent utilization of WDNs poses several disadvantages encompassing water quality degradation, deterioration of the water-distribution system, and extra operational and maintenance costs due to frequently interrupted supply, unfair water distribution among consumers, and reduction of system serviceability. This paper proposes a multi-objective optimization model to address the negative consequences of intermittent water shortages. The model is intended to maximize the quantitative and qualitative reliability and the fairness in water supply, and to minimize the frequency of supply interruption. The developed model also considers pragmatic limitations, water quality, water pressure, and supply reservoir's constraints to plan the operation of intermittent water distribution systems under water shortage. The model's efficiency is tested with a WDN in Iran and compared with a standard operation policy (SOP) for water distribution. According to the evaluated efficiency criteria concerning reliability, resiliency, and vulnerability of water quality and quantity of water supply, the developed model is superior to the SOP rule and improves the performance of the network under intermittent operation. In addition, the results demonstrate there is a tradeoff between the uniformity of water distribution and the frequency of supply interruption that shows operators’ and customers’ conflicting priorities.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 1999
Author(s):  
Malvin S. Marlim ◽  
Doosun Kang

Contamination in water distribution networks (WDNs) can occur at any time and location. One protection measure in WDNs is the placement of water quality sensors (WQSs) to detect contamination and provide information for locating the potential contamination source. The placement of WQSs in WDNs must be optimally planned. Therefore, a robust sensor-placement strategy (SPS) is vital. The SPS should have clear objectives regarding what needs to be achieved by the sensor configuration. Here, the objectives of the SPS were set to cover the contamination event stages of detection, consumption, and source localization. As contamination events occur in any form of intrusion, at any location and time, the objectives had to be tested against many possible scenarios, and they needed to reach a fair value considering all scenarios. In this study, the particle swarm optimization (PSO) algorithm was selected as the optimizer. The SPS was further reinforced using a databasing method to improve its computational efficiency. The performance of the proposed method was examined by comparing it with a benchmark SPS example and applying it to DMA-sized, real WDNs. The proposed optimization approach improved the overall fitness of the configuration by 23.1% and showed a stable placement behavior with the increase in sensors.


2013 ◽  
Vol 27 (12) ◽  
pp. 4149-4162 ◽  
Author(s):  
D. Mora-Melia ◽  
P. L. Iglesias-Rey ◽  
F. J. Martinez-Solano ◽  
V. S. Fuertes-Miquel

2021 ◽  
Vol 218 ◽  
pp. 18-31
Author(s):  
Douglas F. Surco ◽  
Diogo H. Macowski ◽  
Flávia A.R. Cardoso ◽  
Thelma P.B. Vecchi ◽  
Mauro A.S.S. Ravagnani

Sign in / Sign up

Export Citation Format

Share Document