Numerical Simulation of Degradation Behavior of Concrete Piles in Sulfate Saline Soils

Author(s):  
Wei Shao ◽  
Danda Shi
2021 ◽  
Vol 11 (19) ◽  
pp. 9097
Author(s):  
Lina Xu ◽  
Haoyun Deng ◽  
Lei Niu ◽  
Yongmei Qian ◽  
Daohan Song

The soil displacement field around a drill-expanded concrete pile is noticeably different from that of an equivalent section pile placed under axial load due to the mutual embedment between the expanded body and the soil. It is important to study the soil displacement field around drill-expanded concrete piles in order to understand the mechanisms of interaction between the pile and the soil. First, the model test of the half-face pile installed in undisturbed soil and the model test of the half-face pile installed in sand were used to study the soil displacement field around the pile. Then, the entire process of the soil displacement field’s formation and development under the load was observed by using digital image correlation (DIC) techniques. Finally, numerical simulation was used to verify the results of the model tests. The results show that the displacement characteristics of the soil around the pile in the undisturbed soil and sand are basically the same. There is a clear soil compression zone under the expanded body, and the magnitude and density of the displaced soil in the compression zone are much higher than in other areas. Both the vertical displacement and the horizontal displacement gradually decrease as the distance from the expanded body and the burial depth increase. The horizontal displacement of the soil under the expanded body follows a trend of first moving toward the pile body and then moving away from it. The results of the numerical simulation are basically consistent with the results of the model test, indicating that the results of the model test are relatively reliable.


2009 ◽  
Vol 00 (00) ◽  
pp. 090904073309027-8
Author(s):  
H.W. Wang ◽  
S. Kyriacos ◽  
L. Cartilier

Sign in / Sign up

Export Citation Format

Share Document