Numerical Simulation of the Degradation Behavior of the Phenolic Resin Matrix During the Production of Carbon/Carbon Composites

2011 ◽  
Vol 19 (5) ◽  
pp. 353-372 ◽  
Author(s):  
N. L. Ravikumar ◽  
Kamal K. Kar ◽  
C. Pandya ◽  
D. Sathiyamoorthy
2021 ◽  
Vol 41 (3) ◽  
pp. 1810-1816
Author(s):  
Zhenyue Zou ◽  
Yan Qin ◽  
Huadong Fu ◽  
Di Zhu ◽  
Zhuangzhuang Li ◽  
...  

2021 ◽  
Author(s):  
IVAN GALLEGOS ◽  
JOSHUA KEMPPAINEN ◽  
SAGAR U. PATIL ◽  
PRATHAMESH DESHPANDE ◽  
JACOB GISSINER ◽  
...  

Carbon-carbon composites (CCCs) widely used in the aerospace and automotive industries due to their excellent mechanical and thermal properties. Phenolic resins have a relatively high carbon yield, which makes them a suitable candidate for CCCs manufacturing. Molecular Dynamics (MD) can further reduce costs by predicting properties of a material before manufacturing and testing. In the present work, a Molecular Dynamics (MD) model of a crosslinked phenolic resin was developed to predict mechanical properties by implementing the fix bond/react algorithm in LAMMPS. The predicted mass density (ρ) and Young’s Modulus (E) agree well with experimental values and highlights the validity of the topologybased approach to building stable molecular models of phenolic resins.


2015 ◽  
Vol 19 (4) ◽  
pp. 1369-1372 ◽  
Author(s):  
Zhe Zhao ◽  
Hai-Ming Huang ◽  
Qing Wang ◽  
Song Ji

To explore whether pressure and temperature can affect thermal contact resistance, we have proposed a new experimental approach for measurement of the thermal contact resistance. Taking the thermal contact resistance between phenolic resin and carbon-carbon composites, cuprum, and aluminum as the examples, the influence of the thermal contact resistance between specimens under pressure is tested by experiment. Two groups of experiments are performed and then an analysis on influencing factors of the thermal contact resistance is presented in this paper. The experimental results reveal that the thermal contact resistance depends not only on the thermal conductivity coefficient of materials, but on the interfacial temperature and pressure. Furthermore, the thermal contact resistance between cuprum and aluminum is more sensitive to pressure and temperature than that between phenolic resin and carbon-carbon composites.


2007 ◽  
Vol 16 (6) ◽  
pp. 096369350701600 ◽  
Author(s):  
Chao Wang ◽  
Jing Wang ◽  
Yongan Niu

To enhance the interfacial adhesion between carbon fibre and epoxy resin matrix, phenolic resin surface treatment agent has been carried out. The influence of phenolic resin treatment agent on interfacial adhesion of carbon fibre reinforced epoxy resin composites were investigated by interlaminar shear strength, atomic force microscopy, X-ray photoelectron spectroscopy and scanning electron microscopy. The results indicated that the interfacial adhesion was improved greatly after carbon fibre treated by phenolic resin surface treatment agent.


Carbon ◽  
1998 ◽  
Vol 36 (7-8) ◽  
pp. 903-912 ◽  
Author(s):  
H.m. Gajiwala ◽  
U.K. Vaidya ◽  
S.A. Sodah ◽  
S. Jeelani

Sign in / Sign up

Export Citation Format

Share Document