Comparison of fuel efficiency and economical speed for internal combustion engine vehicle and battery electric vehicle using backward-looking simulation

2017 ◽  
Vol 31 (9) ◽  
pp. 4499-4509 ◽  
Author(s):  
Hoon Lee ◽  
Hoimyung Choi
Author(s):  
I Foster ◽  
J R Bumby

This paper examines the potential of the hybrid electric vehicle in substituting petroleum fuel by broad-based electrical energy. In particular a hybrid car is considered. The way in which the powertrain can be controlled and the effect component ratings have on achieving the petroleum substitution objective are described. It is shown that a hybrid vehicle can be designed that can achieve a petroleum substitution of between 20 and 70 per cent of the equivalent internal combustion engine vehicle, be capable of entering environmentally sensitive areas and yet be capable of a range at high and intermediate speeds that is limited only by the size of its fuel tank.


Author(s):  
Xin Sun ◽  
Vanessa Bach ◽  
Matthias Finkbeiner ◽  
Jianxin Yang

AbstractChina is globally the largest and a rapidly growing market for electric vehicles. The aim of the paper is to determine challenges related to criticality and environmental impacts of battery electric vehicles and internal combustion engine vehicles, focusing not only on a global but also the Chinese perspective, applying the ESSENZ method, which covers a unique approach to determine criticality aspects as well as integrating life cycle assessment results. Real industry data for vehicles and batteries produced in China was collected. Further, for the criticality assessment, Chinese import patterns are analyzed. The results show that the battery electric vehicle has similar and partly increased environmental impacts compared with the internal combustion engine vehicle. For both, the vehicle cycle contributes to a large proportion in all the environmental impact categories except for global warming. Further, battery electric vehicles show a higher criticality than internal combustion engine vehicles, with tantalum, lithium, and cobalt playing essential roles. In addition, the Chinese-specific results show a lower criticality compared to the global assessment for the considered categories trade barriers and political stability, while again tantalum crude oil and cobalt have high potential supply disruptions. Concluding, battery electric vehicles still face challenges regarding their environmental as well as criticality performance from the whole supply chain both in China and worldwide. One reason is the replacement of the lithium-ion power battery. By enhancing its quality and establishing battery recycling, the impacts of battery electric vehicle would decrease.


Sign in / Sign up

Export Citation Format

Share Document