scholarly journals Criticality Assessment of the Life Cycle of Passenger Vehicles Produced in China

Author(s):  
Xin Sun ◽  
Vanessa Bach ◽  
Matthias Finkbeiner ◽  
Jianxin Yang

AbstractChina is globally the largest and a rapidly growing market for electric vehicles. The aim of the paper is to determine challenges related to criticality and environmental impacts of battery electric vehicles and internal combustion engine vehicles, focusing not only on a global but also the Chinese perspective, applying the ESSENZ method, which covers a unique approach to determine criticality aspects as well as integrating life cycle assessment results. Real industry data for vehicles and batteries produced in China was collected. Further, for the criticality assessment, Chinese import patterns are analyzed. The results show that the battery electric vehicle has similar and partly increased environmental impacts compared with the internal combustion engine vehicle. For both, the vehicle cycle contributes to a large proportion in all the environmental impact categories except for global warming. Further, battery electric vehicles show a higher criticality than internal combustion engine vehicles, with tantalum, lithium, and cobalt playing essential roles. In addition, the Chinese-specific results show a lower criticality compared to the global assessment for the considered categories trade barriers and political stability, while again tantalum crude oil and cobalt have high potential supply disruptions. Concluding, battery electric vehicles still face challenges regarding their environmental as well as criticality performance from the whole supply chain both in China and worldwide. One reason is the replacement of the lithium-ion power battery. By enhancing its quality and establishing battery recycling, the impacts of battery electric vehicle would decrease.

2020 ◽  
Vol 1 ◽  
pp. 1-23
Author(s):  
Dominik Bucher ◽  
Henry Martin ◽  
Jannik Hamper ◽  
Atefeh Jaleh ◽  
Henrik Becker ◽  
...  

Abstract. The adoption of electric vehicles has the potential to help decarbonizing the transport sector if they are powered by renewable energy sources. Limitations commonly associated with e-cars are their comparatively short ranges and long recharging cycles, leading to anxiety when having to travel long distances. Other factors such as temperature, destination or weekday may influence people in choosing an e-car for a certain trip. Using a unique dataset of 129 people who own both an electric vehicle (EV) as well as one powered by an internal combustion engine (ICE), we analyze tracking data over a year in order to have an empirically verified choice model. Based on a wide range of predictors, this model tells us for an individual journey if the person would rather choose the EV or the ICE car. Our findings show that there are only weak relations between the predictor and target variables, indicating that for many people the switch to an e-car would not affect their lifestyle and the related range anxiety diminishes when actually owning an electric vehicle. In addition, we find that choice behavior does not generalize well over different users.


Author(s):  
Richik Ray

Abstract: In this paper, a MATLAB based Simulink model of a Series-Parallel Hybrid Electric Vehicle is presented. With the advent of Industry 4.0, the usage of Big Data, Machine Learning, Internet of Things, Artificial Intelligence, and similar groundbreaking domains of technology have usurped manual supervision in industrial as well as personal scenarios. This is aided by the drastic shift from orthodox and conventional Internal Combustion Engine based vehicles fuelled by fossil fuels in the order of petrol, diesel, etc., to fully functional electric vehicles developed by renowned companies, for example Tesla. Alongside 100% electric vehicles are hybrid vehicles that function on a system based on the integration of the conventional ICE and the modern Electric Propulsion System, which is referred to as the Hybrid Vehicle Drivetrain. Designs for modern HEVs and EVs are developed on computer software where simulations are run and all the essential parameters for the vehicle’s performance and sustainability are run and observed. This paper is articulated to discuss the parameters of a series-parallel HEV through an indepth MATLAB Simulink design, and further the observations are presented. Keywords: ICE (Internal Combustion Engine), HEV (Hybrid Electric Vehicle), Drivetrain, MATLAB, Simulink, PSD (Power Split Device), Vehicle Dynamics, SOC (State-of-Charge)


Author(s):  
Nikola Holjevac ◽  
Federico Cheli ◽  
Massimiliano Gobbi

The early concept design of a vehicle is becoming increasingly crucial to determine the success of a car. Broadening market competition, more stringent regulations and fast technological changes require a prompt response from carmakers, and computer-aided engineering has emerged in recent years as the promising way to provide more efficient and cost-effective design and to cut development time and costs. The work presented in this paper shows an approach based on computer-aided engineering to determine vehicle’s energy consumption and performance. The different vehicle’s subsystem are first analyzed separately by using dedicated simulation tools and then integrated to obtain the entire vehicle. The work covers a wide range of vehicle layouts. Internal combustion engine vehicles and battery electric vehicles are considered and various transmission configurations are contemplated with respect to some of the most adopted solutions for these vehicles. The simulation results allow to identify the most effective design variables regarding the combustion engine and the electric motor and to compare the different layouts over various car segments. The results clearly point out that for internal combustion engine vehicles, the combustion engine is the crucial component that defines the vehicle’s characteristics and particularly the energy consumption. Conversely, battery electric vehicles show a more balanced distribution of the losses, and therefore to improve the vehicle’s behavior, different components should be considered in detail. Nevertheless, the choice of the number of electric motors and the transmission choice play a significant role in defining the vehicle performances.


2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110402
Author(s):  
Shijun Fu ◽  
Hongji Fu

Introduction: Although forecasting electric vehicles’ growth in China was frequently reported in the literature, predicting electric vehicles market penetration as well as corresponding energy saving and carbon dioxide mitigation potential in a more suitable method is not well understood. Methods: This study chose the double species model to predict electric vehicles’ growth trajectory under mutually competitive conditions between electric vehicles and internal combustion engine vehicles. For comparison, it set two scenarios: with 200 and 300 vehicles per thousand persons at 2050. To give details on energy saving and carbon dioxide mitigation potential induced by electric vehicles’ market penetration, it further divided electric vehicles into five subgroups and internal combustion engine vehicles into seven subgroups, therein forming respective measurement formulas. Results: This paper solved the double species model and thus got its analytical formula. Then it employed the analytical formula to conduct an empirical study on electric vehicles market penetration in China from year 2010 to 2050. Under scenario 300, electric vehicles growth trajectory will emerge a quick growth stage during 2021–2035, thereafter keeping near invariant till 2050. Meanwhile, current internal combustion engine vehicles’ quick growth will continue up to 2027, then holding constant during 2028–2040, afterwards following a 10-year slowdown period. Scenario 200 has similar features, but a 2-year delay for electric vehicles and a 5-year lead time for internal combustion engine vehicles were found. On average, scenario 300 will save 114.4 Mt oil and 111.5 Mt carbon dioxide emissions, and scenario 200 will save 77.1 Mt oil and 73.4 Mt carbon dioxide emissions each year. Beyond 2032, annual 50.0% of road transport consumed oil and 18.6% of carbon dioxide emissions from this sector will be saved under scenario 300. Discussion: Compared with scenario 200, scenario 300 was more suitable to predict electric vehicle market penetration in China. In the short-term electric vehicle penetration only brings about trivial effects, while in the long-term it will contribute a lot to both energy security and carbon dioxide mitigation. The contribution of this article provided a more suitable methodology for predicting electric vehicle market penetration, simulated two coupled trajectories of electric vehicles and internal combustion engine vehicles, and discussed relative energy-saving and climate effects from 2010 to 2050.


2017 ◽  
Vol 2650 (1) ◽  
pp. 123-132 ◽  
Author(s):  
Tanja Niels ◽  
Klaus Bogenberger

In recent years, the services of free-floating carsharing (FFCS) systems have gained popularity, especially in urban areas. Some FFCS operators are now including battery electric vehicles (BEVs) in their fleets. This addition is especially beneficial for cities and their inhabitants, as BEVs are locally emission free and move more quietly. However, how FFCS customers react to the new technology has not yet been empirically analyzed. By combining the app call and booking data of an FFCS operator in Munich, Germany, this study assessed the preferences of customers when booking a specific car and evaluated the attractiveness of the fleet’s BEVs. With the consideration of the spatial availability encountered when the mobile phone app was opening, the study found that the distance to the nearest available car was the most important decision criterion for customers. If a car had been available within 200 m, the probability that customers booked a car would have been twice as great compared with the case that the nearest vehicle had been 500 m away (100 m ≈ 0.06 mi). In addition, the majority of the customers booked the nearest available car. Nevertheless, certain qualities of vehicles made users walk to a car that was farther away. The study identified popular vehicle models and found that customers preferred to use the fleet’s BEVs, independent of the battery level. BEVs were used for almost the same distances as internal combustion engine vehicles and were suitable for most use cases: more than 80% of the FFCS trips covered a distance of at most 20 km (≈12.4 mi).


2017 ◽  
Vol 139 (11) ◽  
pp. 28-33 ◽  
Author(s):  
John Kosowatz

This article presents advancements in the development of battery-powered vehicles and the comparison between battery-powered vehicles and internal combustion engine. With its SkyActiv-X, a homogenous charge compression ignition engine, Mazda hopes to improve fuel economy by as much as 20%. A 2016 study by Arthur D. Little, the international consulting firm, comparing battery electric vehicles (BEV) against internal combustion engine vehicles (ICEV) stated, ‘the ultimate environmental and economic reality of electric vehicles is far more complicated than their promise.’ The study showed BEVs enjoy economic advantages. The electricity cost associated with operating BEVs over a distance of one mile is significantly lower than the cost of gasoline over the same distance for a conventional car. The report shows that most of the environmental impacts generated by ICEVs are localized to the combustion of gasoline in the engine; however, the BEV manufacturing process ‘generates a much more widely dispersed and damaging set of environmental impacts.’


2020 ◽  
Vol 12 (6) ◽  
pp. 2387 ◽  
Author(s):  
Bamidele Victor Ayodele ◽  
Siti Indati Mustapa

The transportation sector has been reported as a key contributor to the emissions of greenhouse gases responsible for global warming. Hence, the need for the introduction of electric vehicles (EVs) into the transportation sector. However, the competitiveness of the EVs with the conventional internal combustion engine vehicles has been a bone of contention. Life cycle cost analysis (LCCA) is an important tool that can be employed to determine the competitiveness of a product in its early stage of production. This review examines different published articles on LCCA of EVs using Scopus and Web of Science databases. The time trend of the published articles from 2001 to 2019 was examined. Moreover, the LCC obtained from the different models of EVs were compared. There was a growing interest in research on the LCC of EVs as indicated by the upward increase in the number of published articles. A variation in the LCC of the different EVs studied was observed to depend on several factors. Based on the LCC, EVs were found not yet competitive with conventional internal combustion engine cars due to the high cost of batteries. However, advancement in technologies with incentives could bring down the cost of EV batteries to make it competitive in the future.


Sign in / Sign up

Export Citation Format

Share Document