CFD analysis of effects on fluid flow resistance of metallic wavy structures

2018 ◽  
Vol 32 (4) ◽  
pp. 1705-1711 ◽  
Author(s):  
Jeong-Ho Yang ◽  
Sang-Hu Park
2018 ◽  
Vol 12 (11) ◽  
pp. 885
Author(s):  
Nasaruddin Salam ◽  
Rustan Tarakka ◽  
Jalaluddin Jalaluddin ◽  
Muh. Setiawan Sukardin
Keyword(s):  

2017 ◽  
Vol 73 (4) ◽  
pp. 281
Author(s):  
M. Manikandan ◽  
Samir Saraswati ◽  
K. Ananthakrishnan

2001 ◽  
Author(s):  
J. H. Du ◽  
B. Ma ◽  
W. Wu ◽  
X. J. Hu ◽  
B. X. Wang

Abstract Experiments on fluid flow and heat transfer in a glass bead packed channel between two parallel grooved plates were conducted. The effects of the grooves on the surface of the heated plate upon the flow resistance and heat transfer were investigated. The results indicated that the grooves on the plate surface change the contact condition of the packed beads to the wall and increase the wall effect of the packed channels. Its direct consequence is to lower the flow resistance. The film heat transfer coefficient on the wall may be increased or rebated. It is demonstrated that a proper combination of packed beads and grooves can lead to the optimum performance of heat transfer for a specific configuration.


2013 ◽  
Vol 334-335 ◽  
pp. 322-328 ◽  
Author(s):  
Ana Serrenho ◽  
Antonio F. Miguel

The present study focuses on fluid flow and particle transport in symmetric T-shaped structures formed by tubes with circular and square cross-section. The performances of optimized structures (i.e., structures designed based on constructal allometric laws for minimum flow resistance) and not optimized structures were studied. Flow resistance and particle penetration efficiency were studied both for laminar and turbulent flow regimes, and for micrometer and submicrometer particles. Optimized structures have been proven to perform better for fluid flow but they have a similar performance for particle transport.


2021 ◽  
Vol 39 (3) ◽  
pp. 817-824
Author(s):  
Ameer Abed Jaddoa

This paper analyzes the effect of fluid flow characteristics on the convection heat transfer for mini-helically coiled tubes (HCT) using supercritical carbon dioxide (CO2) as a natural refrigerant. Two experimental cases have studied in this work for mini-helically coiled tubes at different diameters with different coil pitches for analyzing the convection heat transfer with flow resistance. In the first case, the inner tube diameter, coil diameter and coil pitch were 5 mm, 200 mm and 10 mm respectively, while 10 mm, 100 mm and 5 mm were for the second case. Moreover, this work has also investigated the influence of frictional pressure drop, heat flux, friction factor and mass flux on dimensionless exergy destruction. The work environments were 300-500 K as an inlet temperatures range, 200-2000 Kg / (m2. s) as a mass heat fluxes range, 50,000-500,000 as a Reynolds number (Re) range and 50-200 Kw/m2 as an inner heat fluxes range. As a result, a large effect has been observed for dimensionless exergy destruction compared with the flow friction of CO2 which induced by heat transfer irreversibility. On the other point of view, a good sensitivity of optimal Re with the tube dimeter and mass flux also noticed compared with the heat flux. At a suitable range for Re, smallest and best exergy destruction also noticed for the tube diameters. A correlation has for the optimal Reynolds number as function of main dimensionless parameters related to wall heat flux, mass flux, fluid properties and geometric dimensions is proposed. Characteristics of the fluid flow had influenced significantly by mass and heat fluxes. In the future, the collected experimental data can be employed in order to design and improve the refrigeration conditioning performance for exchangers and other systems such as heat pumps.


Sign in / Sign up

Export Citation Format

Share Document