Mathematical modeling based on contact mechanism due to elastic and plastic deformation of pad asperities during CMP

2020 ◽  
Vol 34 (1) ◽  
pp. 289-300
Author(s):  
Hyunjin Kim ◽  
Somin Shin ◽  
Dasol Lee ◽  
Haedo Jeong
2020 ◽  
pp. 14-24
Author(s):  
Francois Louchet

The main mechanical and physical quantities and concepts ruling deformation, fracture, and friction processes are recalled, with particular attention paid to the simplicity of the analysis, but without betraying the scientific validity of the arguments. We particularly discuss the difference between between elastic and plastic deformation, and quasistatic and dynamic loadings, essential in avalanche triggering mechanisms. The physical origin of Griffith’s rupture criterion that rules both fracture nucleation and propagation, and the transition between brittle and ductile failure processes, is thoroughly discussed. We also explain the physical meaning of the classical Coulomb’s friction law, showing why it can hardly apply to a non-conventional porous, brittle, and healable solid like snow.


1988 ◽  
Vol 32 ◽  
pp. 355-364 ◽  
Author(s):  
I. C. Noyan ◽  
L. T. Nguyen

AbstractOscillations jn "d" vs. sin2ψ plots are due to the inhomogeneous partitioning of strains within the diffracting volume. In polycrystalline specimens, such inhomogeneity can be caused by the elastic incompatibility of neighboring grains or by the inhoniogeneous partitioning of plastic deformation within the diffracting volume. There is, however, little work on the degree of inhomogeneity required to cause a given oscillation, and the relative contribution from the elastic and plastic deformation components to a given oscillation.


2004 ◽  
Vol 19 (1) ◽  
pp. 124-130 ◽  
Author(s):  
Jeremy Thurn ◽  
Robert F. Cook

Depth-sensing indentation at ultramicroscopic and macroscopic contacts (“nanoindentation” and “macroindentation,” respectively) was performed on four brittle materials (soda-lime glass, alumina titanium carbide, sapphire, and silicon) and the resulting load–displacement traces examined to provide insight to the elastic and plastic deformation scaling with contact size. The load–displacement traces are examined in terms of the unloading stiffness, the energies deposited during loading and recovered on unloading, and the effect of the indenter tip radius on the loading curve. The results of the analyses show that the elastic and plastic deformation during loading and unloading is invariant with the scale of the contact, and the unloading curve is best described by neither a conical tip nor a paraboloid of revolution, but of some compromise.


2012 ◽  
Vol 256-259 ◽  
pp. 215-219
Author(s):  
Yu Liang Lin ◽  
Yi He Fang

Three new types of reinforced earth structures were introduced including reinforced gabion retaining wall, green reinforced gabion retaining wall and flexible wall face geogrid reinforced earth retaining wall. In order to study settlement behavior of these three retaining walls, lab tests were carried out. Cyclic loading-unloading of different levels (0~50kPa, 0~100kPa, 0~150kPa, 0~200kPa, 0~250kPa, 0~300kPa, 0~350kPa) were imposed. The settlement behaviors of retaining walls were analyzed, and secant modulus when loading and unloading was obtained. Results show that retaining walls present great elastic and plastic deformation, and plastic deformation is greater than elastic deformation. Secant modulus decreases with the increase of loading-unloading cycles under the same loading level. Unloading secant modulus is bigger than loading secant modulus in the same cycle. With the increase of loading level, both elastic and plastic deformation increase, and plastic deformation increases more quickly than elastic deformation.


Sign in / Sign up

Export Citation Format

Share Document