Failure load prediction of adhesively bonded GFRP composite joints using artificial neural networks

2020 ◽  
Vol 34 (11) ◽  
pp. 4631-4640
Author(s):  
Bahadır Birecikli ◽  
Ömer Ali Karaman ◽  
Selahattin Bariş Çelebi ◽  
Aydın Turgut
Author(s):  
Michael J. Candon ◽  
Oleg Levinski ◽  
Alaman Altaf ◽  
Robert Carrese ◽  
Pier Marzocca

Author(s):  
Bahadir Birecikli ◽  
Omer Ali Karaman ◽  
Selahattin Baris Celebi ◽  
Aydin Turgut

The objective of this article was to forecast the ultimate failure load laminate stacking sequence combination on bonding joints which are exposed to tensile strength by using artificial neural networks. We have glass fiber composite materials with three different sequence combinations ([0°/90°], [±45°], [0°/90°/±45°]). Various adherend thicknesses and also ductile type adhesive was used in the experiment. The bonding geometry is a single lap and has four types of overlap angles 30°, 45°, 60°, 75° respectively. The experimental results demonstrate that composite laminate stacking sequence profoundly affects the bonding joints of failure load. Taking experimental results into account, Levenberg–Marquardt learning algorithm model was used by preferring a three layer forward on ANN so as to discipline network. In order to procure a precise ANN tool, an integrate methodology of experimental method has been used. The outcomes are used to ensure the experimental data’s to the ANN. The method of ANN permits surveying much adequately the probabilities of composite laminate stacking sequence combination using the prevalent ones which are [0°/90°], [±45°] and [0°/90°/±45°]. Testing data and training results were quite well 0.998, 0.997 and 0.998 in turn. Consequences acquired can be used by engineers who are interested in the composite material design to enhance failure load.


Sign in / Sign up

Export Citation Format

Share Document