Investigation of pressure pulsations in a reactor coolant pump with mixed-flow vaned diffuser and spherical casing

Author(s):  
Xide Lai ◽  
Daoxing Ye ◽  
Bo Yu ◽  
Xiaoming Chen ◽  
Yaguang Heng
2016 ◽  
Vol 62 (4) ◽  
pp. 231-242 ◽  
Author(s):  
Dan Ni ◽  
Minguan Yang ◽  
Bo Gao ◽  
Ning Zhang ◽  
Zhong Li

2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Dan Ni ◽  
Minguan Yang ◽  
Ning Zhang ◽  
Bo Gao ◽  
Zhong Li

Severe vibrations induced by flow instabilities in the nuclear reactor coolant pump (RCP) are detrimental to the safe operation of the pump. Due to the particular spherical casing in the RCP, the internal flow structures are extremely ambiguity and complicated. The goal of the present work is to shed comprehensive light on the unsteady flow structures and its correlation with the pressure pulsations by using large eddy simulation (LES) method of the RCP. The vorticity distribution and the shedding vortex from the blade trailing edge are depicted in detail. Furthermore, the internal correlations between the flow unsteadiness and pressure pulsation are illustrated in some special regions of the RCP. Evidently, some main excitation components in the pressure spectra are excited by the shedding vortex. Besides, components at blade passing frequency (fBPF) are closely associated with rotor–stator interaction between the wake flow from the impeller outlet and unsteadiness vortexes shedding from the diffuser blade trailing edge. It is thought to be that the pressure pulsations of the RCP are closely associated with the corresponding vorticity distribution and the unsteady vortex shedding effect.


2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Rui Xu ◽  
Yun Long ◽  
Yaoyu Hu ◽  
Junlian Yin ◽  
Dezhong Wang

Reactor coolant pump (RCP) is one of the most important equipment of the coolant loop in a pressurized water reactor system. Its safety relies on the characteristics of the rotordynamic system. For a canned motor RCP, the liquid coolant fills up the clearance between the metal shields of the rotor and stator inside the canned motor, forming a long clearance flow. The fluid-induced forces of the clearance flow in canned motor RCP and their effects on the rotordynamic characteristics of the pump are numerically and experimentally analyzed in this work. A transient computational fluid dynamics (CFD) method has been used to investigate the fluid-induced force of the clearance. A vertical experiment rig has also been established for the purpose of measuring the fluid-induced forces. Fluid-induced forces of clearance flow with various whirl frequencies and various boundary conditions are obtained through the CFD method and the experiment. Results show that clearance flow brings large mass coefficient into the rotordynamic system and the direct stiffness coefficient is negative under the normal operating condition. The rotordynamic stability of canned motor RCP does not deteriorate despite the existence of significant cross-coupled stiffness coefficient from the fluid-induced forces of the clearance flow.


Sign in / Sign up

Export Citation Format

Share Document