Effect of degree of polymerization on the mechanical properties of regenerated cellulose fibers using synthesized 1-allyl-3-methylimidazolium chloride

2013 ◽  
Vol 14 (6) ◽  
pp. 909-914 ◽  
Author(s):  
Su-jin Kim ◽  
Jinho Jang
2011 ◽  
Vol 332-334 ◽  
pp. 489-495 ◽  
Author(s):  
Rong Zhou ◽  
Ming Xia Yang

Regenerated cellulose fiber is the most widely-used and most variety of cellulose fiber. Five categories and ten kinds of fibers such as lyocell fiber, modal fiber, bamboo pulp fiber, sheng-bast fiber, Outlast viscose fiber were chosen as the research object. The strength property and elasticity of fibers in dry and wet state were tested and analysis. The comprehensive performances of fabrics were studied and mechanical properties of the fibers were listed in the order from good to bad by grey clustering analysis. The results show lyocell G100 and lyocell LF have better comprehensive mechanical properties ,while other new regenerated cellulose fibers’ comprehensive mechanical properties are general. Among these fibers modal fiber’s comprehensive mechanical properties are slightly better than sheng-bast fibers’ and bamboo pulp fibers’. Modal fiber, sheng-bast fiber and Bamboo pulp fiber have no significantly poor single parameter and all of them have better comprehensive mechanical properties than various viscose fibers. Outlast viscose in which has been added phase change materials sensitive to temperature by Microcapsule techniques fundamentally keeps similar comprehensive mechanical properties with other regenerated cellulose fibers,but its properties decline slightly .


2019 ◽  
Vol 20 (3) ◽  
pp. 501-511
Author(s):  
Young Jae Lee ◽  
Sung Jun Lee ◽  
Sang Won Jeong ◽  
Hyun-chul Kim ◽  
Tae Hwan Oh ◽  
...  

2007 ◽  
Vol 8 (2) ◽  
pp. 624-630 ◽  
Author(s):  
Kenny Kong ◽  
Richard J. Davies ◽  
Michael A. McDonald ◽  
Robert J. Young ◽  
Michael A. Wilding ◽  
...  

Cellulose ◽  
2020 ◽  
Author(s):  
Sherif Elsayed ◽  
Michael Hummel ◽  
Daisuke Sawada ◽  
Chamseddine Guizani ◽  
Marja Rissanen ◽  
...  

Abstract Lyocell fibers have received increased attention during the recent years. This is due to their high potential to satisfy the rising market demand for cellulose-based textiles in a sustainable way. Typically, this technology adopts a dry-jet wet spinning process, which offers regenerated cellulose fibers of excellent mechanical properties. Compared to the widely exploited viscose process, the lyocell technology fosters an eco-friendly process employing green direct solvents that can be fully recovered with low environmental impact. N-methylmorpholine N-oxide (NMMO) is a widely known direct solvent that has proven its success in commercializing the lyocell process. Its regenerated cellulose fibers exhibit higher tenacities and chain orientation compared to viscose fibers. Recently, protic superbase-based ionic liquids (ILs) have also been found to be suitable solvents for lyocell-type fiber spinning. Similar to NMMO, fibers of high mechanical properties can be spun from the cellulose-IL solutions at lower spinning temperatures. In this article, we study the different aspects of producing regenerated cellulose fibers using NMMO and relevant superbase-based ILs. The selected ILs are 1,5-diazabicyclo[4.3.0]non-5-ene-1-ium acetate ([DBNH]OAc), 7-methyl-1,5,7-triazabicyclo[4.4.0] dec-5-enium acetate ([mTBDH]OAc) and 1,8-diazabicyclo[5.4.0]undec-7-enium acetate ([DBUH]OAc). All ILs were used to dissolve a 13 wt% (PHK) cellulose pulp. The study covers the fiber spinning process, including the rheological characterization of the various cellulose solutions. Moreover, we discuss the properties of the produced fibers such as mechanical performance, macromolecular properties and morphology. Graphic abstract


2019 ◽  
Vol 800 ◽  
pp. 138-144
Author(s):  
Velta Fridrihsone ◽  
Juris Zoldners ◽  
Marite Skute ◽  
Uldis Grinfelds ◽  
Inese Filipova ◽  
...  

Recycling of paper materials or other type of cellulose fibres is important regarding saving nature resources and environmental protection. Cellulose dissolution and regenerating from various materials is one of recycling possibilities. Cellulose dissolution by NaOH/urea system has a great potential due to the use of harmless reagents, and at the same time is challenging due to the forming of gel-like substances, when cellulose has degree of polymerization more than 1000. It was found that microcrystalline cellulose and cotton cellulose were dissolved in NaOH/urea, but tissue paper, filter paper and waste paper were not dissolved completely. Additives of Kraft pulp and pulp waste dissolved and regenerated from NaOH/urea and cupriethylendiamine (CuETD) in amount 0-30% from paper composition increased mechanical properties of paper sheet. CuETD additive was more effective than NaOH/urea additive, however latter has potential for further research as environmentally friendlier.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1746
Author(s):  
Zainab Al-Maqdasi ◽  
Roberts Joffe ◽  
Ayoub Ouarga ◽  
Nazanin Emami ◽  
Shailesh Singh Chouhan ◽  
...  

Regenerated cellulose fibers coated with copper via electroless plating process are investigated for their mechanical properties, molecular structure changes, and suitability for use in sensing applications. Mechanical properties are evaluated in terms of tensile stiffness and strength of fiber tows before, during and after the plating process. The effect of the treatment on the molecular structure of fibers is investigated by measuring their thermal stability with differential scanning calorimetry and obtaining Raman spectra of fibers at different stages of the treatment. Results show that the last stage in the electroless process (the plating step) is the most detrimental, causing changes in fibers’ properties. Fibers seem to lose their structural integrity and develop surface defects that result in a substantial loss in their mechanical strength. However, repeating the process more than once or elongating the residence time in the plating bath does not show a further negative effect on the strength but contributes to the increase in the copper coating thickness, and, subsequently, the final stiffness of the tows. Monitoring the changes in resistance values with applied strain on a model composite made of these conductive tows show an excellent correlation between the increase in strain and increase in electrical resistance. These results indicate that these fibers show potential when combined with conventional composites of glass or carbon fibers as structure monitoring devices without largely affecting their mechanical performance.


Sign in / Sign up

Export Citation Format

Share Document