fibril aggregates
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 6)

H-INDEX

10
(FIVE YEARS 1)

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4611
Author(s):  
Haruki Koike ◽  
Masahisa Katsuno

Amyloidosis is a group of diseases that includes Alzheimer’s disease, prion diseases, transthyretin (ATTR) amyloidosis, and immunoglobulin light chain (AL) amyloidosis. The mechanism of organ dysfunction resulting from amyloidosis has been a topic of debate. This review focuses on the ultrastructure of tissue damage resulting from amyloid deposition and therapeutic insights based on the pathophysiology of amyloidosis. Studies of nerve biopsy or cardiac autopsy specimens from patients with ATTR and AL amyloidoses show atrophy of cells near amyloid fibril aggregates. In addition to the stress or toxicity attributable to amyloid fibrils themselves, the toxicity of non-fibrillar states of amyloidogenic proteins, particularly oligomers, may also participate in the mechanisms of tissue damage. The obscuration of the basement and cytoplasmic membranes of cells near amyloid fibrils attributable to an affinity of components constituting these membranes to those of amyloid fibrils may also play an important role in tissue damage. Possible major therapeutic strategies based on pathophysiology of amyloidosis consist of the following: 1) reducing or preventing the production of causative proteins; 2) preventing the causative proteins from participating in the process of amyloid fibril formation; and/or 3) eliminating already-deposited amyloid fibrils. As the development of novel disease-modifying therapies such as short interfering RNA, antisense oligonucleotide, and monoclonal antibodies is remarkable, early diagnosis and appropriate selection of treatment is becoming more and more important for patients with amyloidosis.


Cellulose ◽  
2021 ◽  
Author(s):  
Cláudia V. Esteves ◽  
Olena Sevastyanova ◽  
Sören Östlund ◽  
Elisabet Brännvall

AbstractThe fiber properties after oxygen delignification and kraft pulping were studied by looking into the chemical characteristics and morphology. The effect of the two processes on the fibers was evaluated and compared over a wider kappa number range (from 62 down to15). Wide-angle X-ray scattering, nuclear magnetic resonance and fiber saturation point were used to characterize the fiber network structure. Fiber morphology and fiber dislocations were evaluated by an optical image analysis. The total and surface fiber charges were studied by conductometric and polyelectrolyte titrations. The fiber wall supramolecular structure, such as crystallinity, size of fibril aggregates, pore size and pore volume, were similar for the two processes. The selectivity, in terms of carbohydrate yield, was equal for kraft cooking and oxygen delignification, but the selectivity in terms of viscosity loss per amount of delignification is poorer for oxygen delignification. Clearly more fiber deformations (2–6% units in curl index) in the fibers after oxygen delignification were seen. Introduction of curl depended on the physical state of the fibers, i.e. liberated or in wood matrix. In the pulping stage, the fiber continue to be supported by neighboring fibers, as the delignified chips maintain their form. However, in the subsequent oxygen stage the fibers enter in the form of pulp (liberated fibers), which makes them more susceptible to changes in fiber form. Graphic abstract


Author(s):  
Akira Naito

Glucagon is a 29-amino acid peptide hormone secreted by pancreatic α-cells and interacts with specific receptors located in various organs. Glucagon tends to form gel-like fibril aggregates that are cytotoxic because they activate apoptotic signaling pathways. First, fibril formation by glucagon in acidic solution is discussed in light of morphological and structural changes during elapsed time. Second, we provide kinetic analyses using a two-step autocatalytic reaction mechanism; the first step is a homogeneous nuclear formation process, and the second step is an autocatalytic heterogeneous fibril elongation process. Third, the processes of fibril formation by glucagon in a membrane environment are discussed based on the structural changes in the fibrils. In the presence of bicelles in acidic solution, glucagon interacts with the bicelles and forms fibril intermediates on the bicelle surface and grows into elongated fibrils. Glucagon-dimyristoylphosphatidylcholine (DMPC) bilayers in neutral solution mimic the environment for fibril formation by glucagon under near-physiological condition. Under these conditions, glucagon forms fibril intermediates that grow into elongated fibrils inside the lipid bilayer. Many days after preparing the glucagon-DMPC bilayer sample, the fibrils form networks inside and outside the bilayer. Furthermore, fibril intermediates strongly interact with lipid bilayers to form small particles.


2020 ◽  
Vol 11 (24) ◽  
pp. 4191-4202
Author(s):  
Nicholas R. Marzano ◽  
Kelly M. Wray ◽  
Caitlin L. Johnston ◽  
Bishnu P. Paudel ◽  
Yuning Hong ◽  
...  

2020 ◽  
Author(s):  
Nicholas. R Marzano ◽  
Kelly M Wray ◽  
Caitlin L Johnston ◽  
Bishnu P Paudel ◽  
Yuning Hong ◽  
...  

AbstractThe aggregation of proteins into amyloid fibrils has been implicated in the pathogenesis of a variety of neurodegenerative diseases, including Alzheimer’s and Parkinson’s disease. Benzothiazole dyes such as Thioflavin T (ThT) are well characterised and widely used fluorescent probes for monitoring amyloid fibril formation. However, existing dyes lack sensitivity and specificity to oligomeric intermediates formed during fibril formation. In this work we describe the use of an α-cyanostilbene derivative with aggregation-induced emission properties (called ASCP) as a fluorescent probe for the detection of amyloid fibrils. Similar to ThT, ASCP is fluorogenic in the presence of amyloid fibrils and upon binding and excitation at 460 nm produces a red-shifted emission with a large Stokes shift of 145 nm. ASCP has a higher binding affinity to fibrillar α-synuclein than ThT and likely shares the same binding sites to amyloid fibrils. Importantly, ASCP was found to also be fluorogenic in the presence of amorphous aggregates and can detect oligomeric species formed early during aggregation. Moreover, ASCP can be used to visualise fibrils via Total Internal Reflection Fluorescence (TIRF) microscopy and, due to its large Stokes shift, simultaneously monitor the fluorescence emission of other labelled proteins following excitation with the same laser used to excite ASCP. Consequently, ASCP possesses enhanced and unique spectral characteristics compared to ThT that make it a promising alternative for the in vitro study of amyloid fibrils and the mechanisms by which they form.


2019 ◽  
Vol 52 (19) ◽  
pp. 7278-7288 ◽  
Author(s):  
Pan Chen ◽  
Camilla Terenzi ◽  
István Furó ◽  
Lars A. Berglund ◽  
Jakob Wohlert

2017 ◽  
Vol 7 (6) ◽  
pp. 20160099 ◽  
Author(s):  
Wathsala Liyanage ◽  
Paul W. Rubeo ◽  
Bradley L. Nilsson

Peptide and low molecular weight amino acid-based materials that self-assemble in response to environmental triggers are highly desirable candidates in forming functional materials with tunable biophysical properties. In this paper, we explore redox-sensitive self-assembly of cationic phenylalanine derivatives conjugated to naphthalene diimide (NDI). Self-assembly of the cationic Phe-NDI conjugates into nanofibrils was induced in aqueous solvent at high ionic strength. Under reducing conditions, these self-assembled Phe-NDI conjugate fibrils underwent a morphological change to non-fibril aggregates. Upon reoxidation, the initially observed fibrils were reformed. The study herein provides an interesting strategy to effect reversible switching of the structure of supramolecular materials that can be applied to the development of sophisticated stimulus-responsive materials.


Sign in / Sign up

Export Citation Format

Share Document