cellulosic materials
Recently Published Documents


TOTAL DOCUMENTS

549
(FIVE YEARS 74)

H-INDEX

48
(FIVE YEARS 6)

2022 ◽  
pp. 125-136
Author(s):  
Çağrı Akyol ◽  
Anna Laura Eusebi ◽  
Giulia Cipolletta ◽  
Cecilia Bruni ◽  
Alessia Foglia ◽  
...  

2021 ◽  
pp. 31-45
Author(s):  
Evgeniy Alekseevich Toptunov ◽  
Yuliya Veniaminovna Sevastyanova

Recently, due to the growing interest in powdered cellulosic materials, a large number of studies have been carried out on various methods of their preparation. The main interest is associated with new opportunities for research on nanocellulose. However, for a complete understanding, it is necessary to have information about all powdered cellulosic materials and the peculiarities of their preparation. This paper provides an overview of powdered cellulosic materials, presents their characteristics, and describes the properties of the materials. It is shown that the morphology of its fiber, as well as the ratio of crystalline and amorphous regions of cellulose, has a significant effect on the properties of the material. Peculiarities of obtaining powdered cellulose materials are discussed, depending on the required properties, and existing research in the field of mechanical, chemical and enzymatic processing of cellulose is presented. The main areas of application of various powdered cellulose materials are described, as well as the current situation on the market, examples of both domestic and foreign manufacturers are given. The information on powdered cellulose materials is generalized, their classification is given, which is consistent with the modern concepts described in the scientific works of researchers from all over the world.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3433
Author(s):  
Sumedha Liyanage ◽  
Sanjit Acharya ◽  
Prakash Parajuli ◽  
Julia L. Shamshina ◽  
Noureddine Abidi

Petroleum-based synthetic plastics play an important role in our life. As the detrimental health and environmental effects of synthetic plastics continue to increase, the renewable, degradable and recyclable properties of cellulose make subsequent products the “preferred environmentally friendly” alternatives, with a small carbon footprint. Despite the fact that the bioplastic industry is growing rapidly with many innovative discoveries, cellulose-based bioproducts in their natural state face challenges in replacing synthetic plastics. These challenges include scalability issues, high cost of production, and most importantly, limited functionality of cellulosic materials. However, in order for cellulosic materials to be able to compete with synthetic plastics, they must possess properties adequate for the end use and meet performance expectations. In this regard, surface modification of pre-made cellulosic materials preserves the chemical profile of cellulose, its mechanical properties, and biodegradability, while diversifying its possible applications. The review covers numerous techniques for surface functionalization of materials prepared from cellulose such as plasma treatment, surface grafting (including RDRP methods), and chemical vapor and atomic layer deposition techniques. The review also highlights purposeful development of new cellulosic architectures and their utilization, with a specific focus on cellulosic hydrogels, aerogels, beads, membranes, and nanomaterials. The judicious choice of material architecture combined with a specific surface functionalization method will allow us to take full advantage of the polymer’s biocompatibility and biodegradability and improve existing and target novel applications of cellulose, such as proteins and antibodies immobilization, enantiomers separation, and composites preparation.


2021 ◽  
Author(s):  
Tetyana Koso ◽  
Marco Beaumont ◽  
Blaise Tardy ◽  
Daniel Rico del Cerro ◽  
Samuel Eyley ◽  
...  

Gas-phase acylation of cellulose is an attractive method for modifying the surface properties of cellulosics. However, little is known concerning the regioselectivity of the chemistry, in terms of which cellulose positions are preferentially acylated and if acylation can be restricted to the surface, preserving crystallinities/morphologies. Consequently, we reexplore simple gas-phase acetylation of modern-day cellulosic building blocks – cellulose nanocrystals, pulps, regenerated fibre and aerogels. The gas-phase acetylation is shown to be highly regioselective for the C6-OH, is further supported with computational modelling. This contrasts with liquid-state acetylation, highlighting that the gas-phase chemistry is much more controllable, yet with similar kinetics to the uncatalyzed liquid-phase reactions. Furthermore, this method preserves both the native crystalline structure of cellulose and the supramolecular morphologies of even delicate cellulosic constructs (aerogel exhibiting retention of chiral cholesteric liquid crystalline phases). Therefore, we are convinced that this methodology will lead to more rapid adoption of precisely tailored and cellulosic materials


Cellulose ◽  
2021 ◽  
Author(s):  
Thomas Rosenau ◽  
Antje Potthast ◽  
Hubert Hettegger ◽  
Markus Bacher ◽  
Martina Opietnik ◽  
...  

AbstractSeveral literature reports describe the role of aqueous solutions of N-methylmorpholine-N-oxide monohydrate (NMMO) as a suitable medium for the generation of transition metal (nano)particles in or on cellulosic materials and further elaborate its role as a co-reactant of the transition metal salts that are reduced to the elemental metal. However, this would assign NMMO the role of a reductant, which is in contradiction of its obvious oxidative nature. In the present study, the exemplary cases of silver, gold, and platinum salts as the precursors of the respective metal (nano)particles in aqueous NMMO/cellulose mixtures were investigated. Naturally, NMMO did not act as a reducing agent in any case—this role was taken over by the frequently used NMMO stabilizer propyl gallate, or by cellulose itself, into which carbonyl and carboxyl groups were introduced. Also, hypochlorite—produced intermediately from chloride ions and subsequently undergoing disproportionation into chloride and chlorate—or transient N-methylene(morpholinium) ions generated from NMMO, which are in turn oxidized to formyl morpholide, can act as the corresponding reductants while the metal ions are reduced, depending on the reaction conditions. Apart from providing interesting mechanistic insights, the study points to the importance of a precise description of the composition of the chemical systems used, as well as the importance of seemingly inert auxiliaries, which turned out to be essential co-reactants in the metal (nano)particle generation. Graphic abstract


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4977
Author(s):  
Tomasz Ganicz ◽  
Krystyna Rózga-Wijas

The results of the application of a new hydrophobization agent based on a triethoxymethylsilane and standard starch aqueous mixture for mass-produced cellulosic materials—printing paper, paperboard, and sack paper—have been evaluated to examine whether such a mixture can be used in industrial practice. The application of this agent on laboratory sheets prepared in a repetitive recycling process was performed to investigate its influence on the formation and properties of the products, as well as the contamination of circulating water. Measurements of the water contact angle, Cobb tests, and water penetration dynamics (PDA) were performed to test the barrier properties of the resulting materials. The effects of the applied coatings and recycling process on the paper’s tensile strength, tear index, roughness, air permeance, and ISO brightness were studied. Studies have proven that this formulation imparts relatively high surface hydrophobicity to all materials tested (contact angles above 100°) and a significant improvement in barrier properties while maintaining good mechanical and optical performance. The agent also does not interfere with the pulping and re-forming processes during recycling and increases circulation water contamination to an acceptable degree. Attenuated total reflectance Fourier-transform infrared (FT-IR) spectra of the paper samples revealed the presence of a polysiloxane network on the surface.


Author(s):  
Pei Hsia Chu ◽  
Mohd Azwan Jenol ◽  
Lai Yee Phang ◽  
Mohamad Faizal Ibrahim ◽  
Sehanat Prasongsuk ◽  
...  

Abstract Background Pineapple plant (Ananas comosus) is one of the largest productions in Asia and its increasing production has generated a huge amount of pineapple wastes. Pineapple plant stem is made up of high concentration of starch which can potentially be converted into value-added products, including amino acids. Due to the increasing demand in animal feed grade amino acids, especially for methionine and lysine, the utilisation of cheap and renewable source is deemed to be an essential approach. This study aimed to produce amino acids from pineapple plant stem hydrolysates through microbial fermentation by Pediococcus acidilactici Kp10. Dextrozyme was used for hydrolysis of starch and Celluclast 1.5 L for saccharification of cellulosic materials in pineapple plant stem. Results The hydrolysates obtained were used in the fermentation to produce methionine and lysine. Pineapple plant stem showed high starch content of 77.78%. Lignocellulosic composition of pineapple plant stem consisted of 46.15% hemicellulose, 31.86% cellulose, and 18.60% lignin. Saccharification of alkaline-treated pineapple plant stem gave lower reducing sugars of 13.28 g/L as compared to untreated, where 18.56 g/L reducing sugars obtained. Therefore, the untreated pineapple plant stem was selected for further process. Starch hydrolysis produced 57.57 g/L reducing sugar (100% hydrolysis yield) and saccharification of cellulosic materials produced 24.67 g/L reducing sugars (56.93% hydrolysis yield). The starch-based and cellulosic-based of pineapple plant stem were subjected as carbon source in methionine and lysine production by P. acidilactici Kp10. Conclusions In conclusion, higher methionine and lysine production were produced from starch-based hydrolysis (40.25 mg/L and 0.97 g/L, respectively) as compared to cellulosic-based saccharification (37.31 mg/L and 0.84 g/L, respectively) of pineapple plant stem. Graphical Abstract


Sign in / Sign up

Export Citation Format

Share Document