Structural Design and Property Evaluations of Foam-based Composite Materials: Effect of Perforation Depth and Foam Density on the Mechanical, Sound Absorption, and Thermal Properties

Author(s):  
Ruei-Ren Ou ◽  
Chen-Hung Huang ◽  
Ching-Wen Lou ◽  
Jia-Horng Lin
2003 ◽  
Vol 40 (01) ◽  
pp. 42-48
Author(s):  
Chang Doo Jang ◽  
Ho Kyung Kim ◽  
Ha Cheol Song

A surface effect ship is known to be comparable to a high-speed ship. For the structural design of surface effect ships, advanced design methods are needed which can reflect the various loading conditions different from those of conventional ships. Also, minimum weight design is essential because hull weight significantly affects the lift, thrust powering and high-speed performance. This paper presents the procedure of optimum structural design and a computer program to minimize the hull weight of surface effect ships built of composite materials. By using the developed computer program, the optimum structural designs for three types of surface effect ships—built of sandwich plate only, stiffened single skin plate only, and both plates—are carried out and the efficiency of each type is investigated in terms of weight. The computer program, developed herein, successfully reduced the hull weight of surface effect ships by 15–30% compared with the original design. Numerical results of optimum structural designs are presented and discussed.


Author(s):  
Mazhar Hussain ◽  
Daniel Levacher ◽  
Nathalie Leblanc ◽  
Hafida Zmamou ◽  
Irini Djeran Maigre ◽  
...  

Crude bricks are composite materials manufactured with sediments and natural fibers. Natural fibers are waste materials and used in construction materials for reinforcement. Their reuse in manufacturing reinforced crude bricks is eco-friendly and improves mechanical and thermal characteristics of crude bricks. Factors such as type of fibers, percentage of fibers, length of fibers and distribution of fibers inside the bricks have significant effect on mechanical, physical and thermal properties of biobased composite materials. It can be observed by tests such as indirect tensile strength, compressive strength for mechanical characteristics, density, shrinkage, color for physical properties, thermal conductivity and resistivity for thermal properties, and inundation test for durability of crude bricks. In this study, mechanical and physical characteristics of crude bricks reinforced with palm oil fibers are investigated and effect of change in percentage and length of fibers is observed. Crude bricks of size 4*4*16 cm3 are manufactured with dredged sediments from Usumacinta River, Mexico and reinforced with palm oil fibers at laboratory scale. For this purpose, sediments and palm oil fibers characteristics were studied. Length of fibers used is 2cm and 3cm. Bricks manufacturing steps such as sediments fibers mixing, moulding, compaction and drying are elaborated. Dynamic compaction is opted for compaction of crude bricks due to energy control. Indirect tensile strength and compressive strength tests are conducted to identify the mechanical characteristics of crude bricks. Physical properties of bricks are studied through density and shrinkage. Durability of crude bricks is observed with inundation test. Thermal properties are studied with thermal conductivity and resistivity test. Distribution and orientation of fibers and fibers counting are done to observe the homogeneity of fibers inside the crude bricks. Finally, comparison between the mechanical characteristics of crude bricks manufactured with 2cm and 3cm length with control specimen was made.


2019 ◽  
Vol 92 (5) ◽  
pp. 1267-1275
Author(s):  
V. N. Pasovets ◽  
V. A. Kovtun ◽  
M. Mihovski ◽  
Yu. M. Pleskachevskii

2013 ◽  
Vol 677 ◽  
pp. 49-54 ◽  
Author(s):  
Huey Ling Chang ◽  
Chih Ming Chen

In this paper, we present the function of the processing conditions (the amount of filler or diluent in epoxy resin, whether post-curing or not) in thermal properties of the modified silica/epoxy nano-composite materials based on thermal gravimetric analysis (TGA).The results is showed that after post-processing for the nanocomposite materials have a better thermal properties, and adding 3.2wt.% epoxy diluent can be taken a convenience operation, but has a negative effect on thermal properties. Nano-composite materials of diluent 3.2 wt.% plus nano-silica powder 2 wt.% will reach pyrolysis temperature 278.66°C. This reinforcement reaches the highest level observed of the decomposition temperatures of 2wt.% silica filler with no diluent cases nano-composite materials, after post-processing the decomposition temperatures could be enhanced to pyrolysis temperature 308.69 °C.


2013 ◽  
Vol 454 ◽  
pp. 263-267 ◽  
Author(s):  
Hai Tao Yin ◽  
Ming Mei Lang ◽  
Yun Na Zhao

Composite is composed of two or more materials and its main performance is significantly different from that of each material constituting it. Each material has an appropriate quality proportion. This paper summarizes performance features of carbon fiber composite, introduces the use and development history of composite in F1 automobile race, analyzes the structural design and manufacturing process of composite in F1 racing automobile and puts forward the performance of carbon fiber composite to be improved in F1 racing automobile.


Author(s):  
Tatsuo Nishizawa ◽  
Shigeru Shimeno ◽  
Akinori Komatsubara ◽  
Masashi Koyanagawa

In the structural design of composite pavement with a concrete pavement slab overlaid with an asphalt surface course, it is very important to estimate the temperature gradient in the concrete slab. An asphalt surface course reduces the temperature gradient in an underlaid concrete slab, resulting in the reduction of thermal stress of the concrete slab. This effect was investigated by temperature measurement in model pavements and by thermal conductivity analysis. Thermal properties were estimated by a backanalysis by using measured temperatures over 1 year. From the numerical simulations varying the thickness of asphalt surface and concrete slab, the relationship between the reduction effect and the asphalt thickness was derived as a function of the thickness of asphalt surface course, which can be used in the structural design of the composite pavement.


Sign in / Sign up

Export Citation Format

Share Document