Solid-state fermentation with Pleurotus ostreatus improves the nutritive value of corn stover-kudzu biomass

Author(s):  
Uchenna Y. Anele ◽  
Felicia N. Anike ◽  
Alexia Davis-Mitchell ◽  
Omoanghe S. Isikhuemhen
BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 3797-3807
Author(s):  
Magdah Ganash ◽  
Tarek M. Abdel Ghany ◽  
Mohamed A. Al Abboud ◽  
Mohamed M. Alawlaqi ◽  
Husam Qanash ◽  
...  

Lignocellulolytic white-rot fungi allow the bioconversion of agricultural wastes into value-added products that are used in a myriad of applications. The aim of this work was to use corn residues (Zea mays L.) to produce valuable products under solid-state fermentation (SSF) with Pleurotus ostreatus. White-rot fungus P. ostreatus was isolated from maize silage (MS) and thereafter it was inoculated on MS as substrate and compared with maize stover (MSt) and maize cobs (MC) to determine the best lignocellulosic substrate for the production of lignocellulolytic enzymes and extracellular protein. The MS gave the highest productivity of CMCase (368.2 U/mL), FPase (170.5 U/mL), laccase (11.4 U/mL), and MnPase (6.6 U/mL). This is compared to productivity on MSt of 222 U/mL, 50.2 U/mL, 4.55 U/mL, and 2.57 U/mL, respectively; and productivity on MC at the same incubation period as 150.5 U/mL, 48.2 U/mL, 3.58 U/mL, and 2.5 U/mL, respectively. The levels of enzyme production declined with increasing incubation period after 15 and 20 days using MS and MC, respectively, as substrates. Maximum liberated extracellular protein content (754 to 878 µg/mL) was recorded using MS, while a low amount (343 to 408 µg/mL) was liberated with using MSt and MC.


Sign in / Sign up

Export Citation Format

Share Document