scholarly journals Novel members of bacterial community during a short-term chilled storage of common carp (Cyprinus carpio)

Author(s):  
Edit Kaszab ◽  
Milán Farkas ◽  
Júlia Radó ◽  
Adrienn Micsinai ◽  
Brigitta Nyírő-Fekete ◽  
...  

AbstractThis work aimed to identify the key members of the bacterial community growing on common carp (Cyprinus carpio) fillets during chilled storage with next-generation sequencing (NGS) and cultivation-dependent methods. Carp fillets were stored for 96 h at 2 °C and 6 °C with and without a vacuum package, and an additional frozen-thawed storage experiment was set for 120 days. Community profiles of the initial and stored fish samples were determined by amplicon sequencing. Conventional microbial methods were used parallelly for the enumeration and cultivation of the dominant members of the microbial community. Cultivated bacteria were identified with 16S rRNA sequencing and the MALDI-TOF MS method. Based on our results, the vacuum package greatly affected the diversity and composition of the forming microbial community, while temperature influenced the cell counts and consequently the microbiological criteria for shelf-life of the examined raw fish product. Next-generation sequencing revealed novel members of the chilled flesh microbiota such as Vagococcus vulneris or Rouxiella chamberiensis in the vacuum-packed samples. With traditional cultivation, 161 bacterial strains were isolated and identified at the species level, but the identified bacteria overlapped with only 45% of the dominant operational taxonomic units (OTUs) revealed by NGS. Next-generation sequencing is a promising and highly reliable tool recommended to reach a higher resolution of the forming microbial community of stored fish products. Knowledge of the initial microbial community of the flesh enables further optimization and development of processing and storage technology.

2017 ◽  
Vol 82 (4) ◽  
pp. 960-968 ◽  
Author(s):  
Mi-Hwa Lee ◽  
Fan-Zhu Li ◽  
Jiyeon Lee ◽  
Jisu Kang ◽  
Seong-Il Lim ◽  
...  

2021 ◽  
Vol 22 (9) ◽  
Author(s):  
Karunia Adetera Nungki Wijayanti ◽  
Indah Istiqomah ◽  
Murwantoko Murwantoko

Abstract. Wijayanti KAN, Istiqomah I, Murwantoko. 2021. Bacterial abundance and community composition in green, brown and red water from intensive Catfish (Clarias sp.) culture ponds in Yogyakarta, Indonesia. Biodiversitas 22: 3677-3684. Catfish (Clarias sp.) is an important aquaculture commodity in Indonesia and cultured in an intensive system. Microorganisms play an important role in maintaining water quality of aquaculture system. The objective of this study was to determine the bacterial abundance and community composition of green, brown and red water collected from intensive catfish culture ponds in Yogyakarta using next-generation sequencing method. The water samples were collected from intensive catfish culture ponds with different colors, namely green, brown and red ponds located in Yogyakarta. The DNA from water samples was extracted using DNA extraction kit and used as template for 16S rRNA amplification. The V3-V4 hypervariable regions of the 16S rRNA gene were amplified apply for next-generation sequencing technology. This study could explore effectively the bacterial community in water samples. The bacterial communities in this catfish culture water showed higher bacterial richness compared to the other aquaculture system. The diversity of the green, brown and red catfish culture water ponds was similar with the number OTUs of the green, brown and red water samples, which were 1269; 1387 and 1323 OTUs respectively. The 694 OTUs (34.42%) were common core microbiomes in all catfish culture ponds, the 212 OTUs (10.51%) are present on green and brown water ponds, the 182 OTUs (9.02%) were on green and red water ponds, and the 183 OTUs (9.07%) were present on green and brown water ponds. However, the composition of the bacterial community was different. The most dominant phylum in green and brown water ponds was Proteobacteria with relative abundance in green water and brown water 71.6% and 47.0% respectively, whereas, the most dominant phylum in red water was Firmicutes (29.5%). The dominance of Firmicutes phylum in red water ponds may be caused by application of probiotic bacteria, the high organic content, and low oxygen concentration.


Author(s):  
Lateef Babatunde Salam ◽  
Halima Shomope ◽  
Zainab Ummi ◽  
Fatima Bukar

Abstract Background The purpose of this study is to use shotgun next-generation sequencing to unravel the microbial community structure of an agricultural soil, decipher the effects of mercury contamination on the structure of the microbial community and the soil physicochemistry and heavy metals content. Results The soil physicochemistry after mercury contamination revealed a shift in soil pH from neutral (6.99 ± 0.001) to acidic (5.96 ± 0.25), a decline in moisture content to < 4 %, and a significant decrease in the concentrations of all the macronutrients and the total organic matter. Significant decrease in all the heavy metals detected in the agricultural soil was also observed in mercury inundated SL3 microcosm. Structural analysis of the metagenomes of SL1 (agricultural soil) and SL3 (mercury-contaminated agricultural soil) using Illumina shotgun next-generation sequencing revealed the loss due to mercury contamination of 54.75 % of the microbial community consisting of an archaeal domain, 11 phyla, 12 classes, 24 orders, 36 families, 59 genera, and 86 species. The dominant phylum, class, genus, and species in SL1 metagenome are Proteobacteria, Bacilli, Staphylococcus, and Sphingobacterium sp. 21; while in SL3 metagenome, Proteobacteria, Alphaproteobacteria, Singulisphaera, and Singulisphaera acidiphila were preponderant. Mercury contamination resulted in a massive upscale in the population of members of the phylum Planctomycetes and the genera Singulisphaera, Brevundimonas, Sanguibacter, Exiguobacterium, Desulfobacca, and Proteus in SL3 metagenome while it causes massive decline in the population of genera Staphylococcus and Brachybacterium. Conclusions This study revealed that mercury contamination of the agricultural soil imposed selective pressure on the members of the microbial community, which negatively impact on their population, alter soil physicochemistry, and enriched sizable numbers of members of the community that are well adapted to mercury stress. It also reveals members of microbial community hitherto not reported to be important in mercury detoxification process.


Sign in / Sign up

Export Citation Format

Share Document