scholarly journals Bacterial community structure analysis of a hot spring soil by next generation sequencing of ribosomal RNA

Genomics ◽  
2019 ◽  
Vol 111 (5) ◽  
pp. 1053-1058 ◽  
Author(s):  
Nivedita Rawat ◽  
Gopal Krishna Joshi
Microbiology ◽  
2017 ◽  
Vol 86 (1) ◽  
pp. 136-142 ◽  
Author(s):  
A. Sharma ◽  
D. Paul ◽  
D. Dhotre ◽  
K. Jani ◽  
A. Pandey ◽  
...  

2017 ◽  
Vol 82 (4) ◽  
pp. 960-968 ◽  
Author(s):  
Mi-Hwa Lee ◽  
Fan-Zhu Li ◽  
Jiyeon Lee ◽  
Jisu Kang ◽  
Seong-Il Lim ◽  
...  

2021 ◽  
Vol 22 (9) ◽  
Author(s):  
Karunia Adetera Nungki Wijayanti ◽  
Indah Istiqomah ◽  
Murwantoko Murwantoko

Abstract. Wijayanti KAN, Istiqomah I, Murwantoko. 2021. Bacterial abundance and community composition in green, brown and red water from intensive Catfish (Clarias sp.) culture ponds in Yogyakarta, Indonesia. Biodiversitas 22: 3677-3684. Catfish (Clarias sp.) is an important aquaculture commodity in Indonesia and cultured in an intensive system. Microorganisms play an important role in maintaining water quality of aquaculture system. The objective of this study was to determine the bacterial abundance and community composition of green, brown and red water collected from intensive catfish culture ponds in Yogyakarta using next-generation sequencing method. The water samples were collected from intensive catfish culture ponds with different colors, namely green, brown and red ponds located in Yogyakarta. The DNA from water samples was extracted using DNA extraction kit and used as template for 16S rRNA amplification. The V3-V4 hypervariable regions of the 16S rRNA gene were amplified apply for next-generation sequencing technology. This study could explore effectively the bacterial community in water samples. The bacterial communities in this catfish culture water showed higher bacterial richness compared to the other aquaculture system. The diversity of the green, brown and red catfish culture water ponds was similar with the number OTUs of the green, brown and red water samples, which were 1269; 1387 and 1323 OTUs respectively. The 694 OTUs (34.42%) were common core microbiomes in all catfish culture ponds, the 212 OTUs (10.51%) are present on green and brown water ponds, the 182 OTUs (9.02%) were on green and red water ponds, and the 183 OTUs (9.07%) were present on green and brown water ponds. However, the composition of the bacterial community was different. The most dominant phylum in green and brown water ponds was Proteobacteria with relative abundance in green water and brown water 71.6% and 47.0% respectively, whereas, the most dominant phylum in red water was Firmicutes (29.5%). The dominance of Firmicutes phylum in red water ponds may be caused by application of probiotic bacteria, the high organic content, and low oxygen concentration.


Minerals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 596 ◽  
Author(s):  
Shuang Zhou ◽  
Min Gan ◽  
Jianyu Zhu ◽  
Xinxing Liu ◽  
Guanzhou Qiu

It is widely known that bioleaching microorganisms have to cope with the complex extreme environment in which microbial ecology relating to community structure and function varies across environmental types. However, analyses of microbial ecology of bioleaching bacteria is still a challenge. To address this challenge, numerous technologies have been developed. In recent years, high-throughput sequencing technologies enabling comprehensive sequencing analysis of cellular RNA and DNA within the reach of most laboratories have been added to the toolbox of microbial ecology. The next-generation sequencing technology allowing processing DNA sequences can produce available draft genomic sequences of more bioleaching bacteria, which provides the opportunity to predict models of genetic and metabolic potential of bioleaching bacteria and ultimately deepens our understanding of bioleaching microorganism. High-throughput sequencing that focuses on targeted phylogenetic marker 16S rRNA has been effectively applied to characterize the community diversity in an ore leaching environment. RNA-seq, another application of high-throughput sequencing to profile RNA, can be for both mapping and quantifying transcriptome and has demonstrated a high efficiency in quantifying the changing expression level of each transcript under different conditions. It has been demonstrated as a powerful tool for dissecting the relationship between genotype and phenotype, leading to interpreting functional elements of the genome and revealing molecular mechanisms of adaption. This review aims to describe the high-throughput sequencing approach for bioleaching environmental microorganisms, particularly focusing on its application associated with challenges.


Sign in / Sign up

Export Citation Format

Share Document