scholarly journals Meta-analysis of Nekton Utilization of Coastal Habitats in the Northern Gulf of Mexico

2019 ◽  
Vol 43 (7) ◽  
pp. 1722-1745 ◽  
Author(s):  
Terill A. Hollweg ◽  
Mary C. Christman ◽  
Just Cebrian ◽  
Bryan P. Wallace ◽  
Scott L. Friedman ◽  
...  

Abstract Estuaries in the northern Gulf of Mexico (GOM) provide habitat for many ecologically, commercially, and recreationally important fish and crustacean species (i.e., nekton), but patterns of nekton abundance and community assemblages across habitat types, salinity zones, and seasons have not been described region-wide. Recognizing the wealth of information collected from previous and ongoing field sampling efforts, we developed a meta-analytical approach to aggregate nekton density data from separate studies (using different gear types) that can be used to answer key research questions. We then applied this meta-analytical approach to separate nekton datasets from studies conducted in the Gulf of Mexico to summarize patterns in nekton density across and within several estuarine habitat types, including marsh, oyster reefs, submerged aquatic vegetation (SAV), and open-water non-vegetated bottom (NVB). The results of the meta-analysis highlighted several important patterns of nekton use associated with these habitat types. Nekton densities were higher in structured estuarine habitats (i.e., marsh, oyster reefs, SAV) than in open-water NVB habitat. Marsh and SAV community assemblages were relatively similar to each other, but different from those associated with open-water NVB and oyster habitats. Densities of commercially and recreationally important crustacean and fish species were highest in saline marshes, thus demonstrating the importance of this habitat in the northern GOM. The results of our meta-analysis are generally consistent with previous site-specific studies in the region (many of which were included in the meta-analysis) and provide further evidence for these patterns at a regional scale. This meta-analytical approach is easy to implement for diverse research and management purposes, and provides the opportunity to advance understanding of the value and role of coastal habitats to nekton communities.

2020 ◽  
Vol 43 (7) ◽  
pp. 1680-1691
Author(s):  
Melissa Vernon Carle ◽  
Kristopher G. Benson ◽  
James F. Reinhardt

Abstract This collection of papers provides insights into methods and data currently available to quantify the benefits associated with estuarine habitat restoration projects in the northern Gulf of Mexico, USA, with potential applicability to other coastal systems. Extensive habitat restoration is expected to occur in the northern Gulf of Mexico region over the next several decades through funding associated with the 2010 Deepwater Horizon oil spill. Papers in this section examine the development of vegetation, soil properties, invertebrate fauna, and nekton communities in restored coastal marshes and provide a conceptual framework for applying these findings to quantify the benefits associated with compensatory marsh restoration. Extensive meta-analysis of existing data for Gulf of Mexico coastal habitats further confirms that structured habitats such as marsh, submerged aquatic vegetation, and oyster reefs support greater nekton densities than nonvegetated bottom habitat, with oyster reefs supporting different species assemblages than marsh and submerged aquatic vegetation. Other papers demonstrate that while vegetation cover can establish rapidly within the first 5 years of restoration, belowground parameters such as root biomass and soil organic matter remain 44% to 92% lower at restored marshes than reference marshes 15 years after restoration. On average, amphipod and nekton densities are also not fully restored until at least 20 and 13 years following restoration, respectively. Additional papers present methods to estimate the benefits associated with marsh restoration projects, nekton productivity associated with coastal and estuarine habitats, and the benefits associated with the removal of derelict crab traps in Gulf of Mexico estuaries.


Author(s):  
Philine S. E. zu Ermgassen ◽  
Bryan DeAngelis ◽  
Jonathan R. Gair ◽  
Sophus zu Ermgassen ◽  
Ronald Baker ◽  
...  

AbstractSeagrasses, oyster reefs, and salt marshes are critical coastal habitats that support high densities of juvenile fish and invertebrates. Yet which species are enhanced through these nursery habitats, and to what degree, remains largely unquantified. Densities of young-of-year fish and invertebrates in seagrasses, oyster reefs, and salt marsh edges as well as in paired adjacent unstructured habitats of the northern Gulf of Mexico were compiled. Species consistently found at higher densities in the structured habitats were identified, and species-specific growth and mortality models were applied to derive production enhancement estimates arising from this enhanced density. Enhancement levels for fish and invertebrate production were similar for seagrass (1370 [SD 317] g m–2 y–1for 25 enhanced species) and salt marsh edge habitats (1222 [SD 190] g m–2 y–1, 25 spp.), whereas oyster reefs produced ~650 [SD 114] g m–2 y–1(20 spp). This difference was partly due to lower densities of juvenile blue crab (Callinectes sapidus) on oyster reefs, although only oyster reefs enhanced commercially valuable stone crabs (Menippe spp.). The production estimates were applied to Galveston Bay, Texas, and Pensacola Bay, Florida, for species known to recruit consistently in those embayments. These case studies illustrated variability in production enhancement by coastal habitats within the northern Gulf of Mexico. Quantitative estimates of production enhancement within specific embayments can be used to quantify the role of essential fish habitat, inform management decisions, and communicate the value of habitat protection and restoration.


2019 ◽  
Vol 43 (7) ◽  
pp. 1692-1710 ◽  
Author(s):  
Allison L. Ebbets ◽  
Diana R. Lane ◽  
Philip Dixon ◽  
Terill A. Hollweg ◽  
Mary T. Huisenga ◽  
...  

2016 ◽  
Vol 24 (3) ◽  
pp. 306-313 ◽  
Author(s):  
Shailesh Sharma ◽  
Joshua Goff ◽  
Ryan M. Moody ◽  
Dorothy Byron ◽  
Kenneth L. Heck ◽  
...  

2016 ◽  
Author(s):  
Allen Aven ◽  
Ruth H. Carmichael ◽  
Elizabeth E Hieb ◽  
Monica Ross

Since the 1980s, West Indian manatees (Trichechus manatus) have been reported more frequently along the northern Gulf of Mexico (GOM) coast in areas that were recently considered to be outside the species' normal areas of occupancy. The ecological importance of the northern GOM region to manatees is currently unclear, but knowledge of the spatial ecology, population linkages, and habitat associations of individuals occupying the fringes of their known range is vital to bring context and improve understanding of demographic trends and potential threats to the species, rangewide. We tracked regional-scale movements of 13 manatees documented in Mobile Bay, AL using satellite telemetry and mark-recapture methods. We determined movement and occupancy patterns including origins, seasonal dispersal and site fidelity, and functional movement modes of those individuals during the tracking period. Focal manatees moved along the GOM coast between Tampa Bay, FL and Lake Pontchartrain, LA, and consistently returned to discrete locations in both the northern GOM and within the species' core range in peninsular FL. Functional movement model fits confirmed that most relatively long-range seasonal movements were migratory in nature, suggesting that consistently occupied migratory endpoints contain relatively important seasonal habitat for manatees and diminishing the possibility that tracked manatees were nomads or transient within the study area. These results provide evidence of shifting seasonal manatee distribution in the US, and highlight repeatedly used locations that may increase in importance to the species if manatee abundance in the northern GOM increases.


Sign in / Sign up

Export Citation Format

Share Document