Transient Dynamic Characteristics of a Non-Pneumatic Mechanical Elastic Wheel Rolling Over a Ditch

2018 ◽  
Vol 19 (3) ◽  
pp. 499-508 ◽  
Author(s):  
You-Qun Zhao ◽  
Yao-Ji Deng ◽  
Fen Lin ◽  
Ming-Min Zhu ◽  
Zhen Xiao
2015 ◽  
Vol 22 (5) ◽  
pp. 1707-1715 ◽  
Author(s):  
You-qun Zhao ◽  
Li-guo Zang ◽  
Yue-qiao Chen ◽  
Bo Li ◽  
Jian Wang

Author(s):  
Han Xu ◽  
Youqun Zhao ◽  
Qiuwei Wang ◽  
Fen Lin ◽  
Wei Pi

Mechanical elastic wheel (MEW) has the advantages of explosion-proof and prick-proof, which is conducive to the safety and maneuverability of the vehicle. However, the research on the performance of the full vehicle equipped with MEW is rare. Considering the particular properties of the radial and cornering stiffness of MEW, this paper aims to take into account both ride comfort and yaw stability of the vehicle equipped with the MEW through a nonlinear control method. Firstly, a 9-DOF nonlinear full vehicle model with the MEW tire model is constructed. The tire model is fitted based on experimental data, which corrects the impacts of vertical load on the cornering characteristic of the MEW. Then the full vehicle system is decoupled into four subsystems with a single input and a single output each according to active disturbance rejection control (ADRC) technology. In this process, the coupling relationship between different motions of the original system is regarded as the disturbance. Afterward, a novel nonlinear extended state observer is proposed, which has a similar structure of traditional linear extended state observer but smaller estimation error. Next, the control law of Backstepping-ADRC for different subsystems are derived respectively based on the Lyapunov theory. For the first time, the Backstepping-ADRC method is applied to the decoupling control of four-wheel steering and active suspension systems. Furthermore, the parameters of the controllers are adjusted through a multi-objective optimization scheme. Finally, simulation results validate the effectiveness and robustness of the proposed controller, especially when encountering some disturbances. The indices of vehicle body attitude and ride comfort are improved significantly, and also the yaw stability is guaranteed simultaneously.


2021 ◽  
pp. 17-27
Author(s):  
V.I. Kopotilov

The analysis of the physical essence of the kinematic and dynamic radii of the wheel is given. It is stated that the rolling radius of the wheel is a conditional kinematic parameter that characterizes only the rolling mode of the wheel. It is not the shoulder of all longitudinal forces acting on the wheel and should not be used to determine tractive forces, rolling resistance and wheel braking forces. Specific examples are given to illustrate the inappropriateness of using the kinematic radius to determine forces and moments. Keywords: elastic wheel, rolling radius, kinematic radius, dynamic radius, arm of force, traction force, rolling resistance force, braking force, rolling mode


2016 ◽  
Vol 18 (8) ◽  
pp. 5337-5352 ◽  
Author(s):  
Youqun Zhao ◽  
Qiang Wang ◽  
Fen Lin ◽  
Hongxun Fu ◽  
Xianbin Du

2021 ◽  
Vol 341 ◽  
pp. 00039
Author(s):  
Maria Karelina ◽  
Tatyana Balabina ◽  
Alexey Mamaev

Evaluation of the rolling resistance of car tires is now often performed on drum stands like car tests. This necessitates the study of the mechanics of interaction between the wheel and the drum in order to determine its force and kinematic characteristics, including the values and points of application of tangential and normal forces in contact with the drum. These problems can be solved taking into account that the mechanics of elastic wheel rolling on a drum is the same as when rolling on a flat rigid support surface. In this paper, from consideration of the mechanics of interaction between an elastic wheel and a drum, using the equations of power balance and force equilibrium of the wheel, the equations for determining the point of normal reaction in contact and its arm relative to the wheel axis during its rolling along one and two drums have been derived.. These dependencies have a simple form and can be applied when considering the rolling of both a single wheel and the car as a whole on a drum stand.


Author(s):  
Tao Xu ◽  
Youqun Zhao ◽  
Fen Lin ◽  
Qiuwei Wang

For the purpose of anti-puncture and lightweight, a new type of mechanical elastic wheel (MEW) is constructed. However, the large radial stiffness of MEW has a negative effect on ride comfort. To make up for the disadvantage, this paper proposes a novel control strategy consisting of backstepping control and integral sliding-mode control, considering the uncertainties of active suspension and MEW. First, an active suspension system matching MEW is established, discussing the impact of uncertainties. The nonlinear radial characteristic of MEW is fitted based on the previous experiment results. Then, in order to derive ideal motions, an ideal suspension system combining sky-hook and ground-hook damping control is introduced. Next, ignoring the nonlinear characteristics and external random disturbance, a backstepping controller is designed to track ideal variables. Combined with the backstepping control law, an integral sliding-mode control strategy is given, further taking parameter uncertainty and external disturbance into account. To tackle chattering problem, an adaptive state variable matrix is applied. By using Lyapunov stability theory, the whole scheme proves to be robust and convergent. Finally, co-simulations with Carsim and MATLAB/Simulink are carried out. By analyzing the simulation results, it can be concluded that the vehicle adopting backstepping sliding-mode control performs best, with excellent real-time performance and robustness.


Author(s):  
Youqun Zhao ◽  
Han Xu ◽  
Yaoji Deng ◽  
Qiuwei Wang

The new mechanical elastic wheel has the following advantages: non-pneumatic, anti-puncture, and explosion-proof. However, the larger radial stiffness is detrimental to vehicle ride comfort. To solve this problem, an integrated design method of hydro-pneumatic suspension matching mechanical elastic wheel is proposed in this paper. First, the nonlinear radial stiffness of mechanical elastic wheel is fitted by static loading experiment. Next, the mathematical model of hydro-pneumatic suspension is derived. Then, a half-car model, integrating hydro-pneumatic suspension and mechanical elastic wheel, is established. Finally, the top two optimization objectives, including vertical centroid acceleration root mean square and pitch acceleration root mean square, are optimized simultaneously, based on the Pareto multi-objective artificial fish swarm algorithm. The obtained results show that the optimization effect of multi-objective artificial fish swarm algorithm is obvious; the two optimization objectives have been optimized significantly. The proposed method that hydro-pneumatic suspension integrated with mechanical elastic wheel gains critical reference value for the design and optimization of vehicle chassis in theory and practice.


Author(s):  
Xianbin Du ◽  
Youqun Zhao ◽  
Qiang Wang ◽  
Hongxun Fu

An innovative non-pneumatic tyre called the mechanical elastic wheel is introduced; significant challenges exist in the prediction of the dynamic interaction between this mechanical elastic wheel and soil containing an obstacle owing to its highly non-linear properties. To explore the mechanical properties of the mechanical elastic wheel and the soil, the finite element method is used, and a non-linear three-dimensional finite element wheel–soil interaction model is also established. Hyperelastic incompressible rubber, which is one of the main materials of the mechanical elastic wheel, is analysed using the Mooney–Rivlin model. The modified Drucker–Prager cap plasticity constitutive law is utilized to describe the behaviour of the soil, and the obstacle is represented as an elastic body. Simulations with different rotational speeds of the mechanical elastic wheel were conducted. The stress distribution and the displacement of the mechanical elastic wheel and the soil were obtained, and the effects of different rotational speeds on the displacement, the velocity and the acceleration of the hub centre are presented and discussed in detail. These results can provide useful information for optimization of the mechanical elastic wheel.


Sign in / Sign up

Export Citation Format

Share Document