Enhanced method for microbial community DNA extraction and purification from agricultural yellow loess soil

2015 ◽  
Vol 53 (11) ◽  
pp. 767-775 ◽  
Author(s):  
Mathur Nadarajan Kathiravan ◽  
Geun Ho Gim ◽  
Jaewon Ryu ◽  
Pyung Il Kim ◽  
Chul Won Lee ◽  
...  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Vicente Pérez-Brocal ◽  
Fabien Magne ◽  
Susana Ruiz-Ruiz ◽  
Carolina A. Ponce ◽  
Rebeca Bustamante ◽  
...  

Abstract Human lungs harbor a scarce microbial community, requiring to develop methods to enhance the recovery of nucleic acids from bacteria and fungi, leading to a more efficient analysis of the lung tissue microbiota. Here we describe five extraction protocols including pre-treatment, bead-beating and/or Phenol:Chloroform:Isoamyl alcohol steps, applied to lung tissue samples from autopsied individuals. The resulting total DNA yield and quality, bacterial and fungal DNA amount and the microbial community structure were analyzed by qPCR and Illumina sequencing of bacterial 16S rRNA and fungal ITS genes. Bioinformatic modeling revealed that a large part of microbiome from lung tissue is composed of microbial contaminants, although our controls clustered separately from biological samples. After removal of contaminant sequences, the effects of extraction protocols on the microbiota were assessed. The major differences among samples could be attributed to inter-individual variations rather than DNA extraction protocols. However, inclusion of the bead-beater and Phenol:Chloroform:Isoamyl alcohol steps resulted in changes in the relative abundance of some bacterial/fungal taxa. Furthermore, inclusion of a pre-treatment step increased microbial DNA concentration but not diversity and it may contribute to eliminate DNA fragments from dead microorganisms in lung tissue samples, making the microbial profile closer to the actual one.


mSphere ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Katja Engel ◽  
Sara Coyotzi ◽  
Melody A. Vachon ◽  
Jennifer R. McKelvie ◽  
Josh D. Neufeld

ABSTRACT Bentonite clay is an integral component of the engineered barrier system of deep geological repositories (DGRs) that are planned for the long-term storage of high-level radioactive waste. Although nucleic acid extraction and analysis can provide powerful qualitative and quantitative data reflecting the presence, abundance, and functional potential of microorganisms within DGR materials, extraction of microbial DNA from bentonite clay is challenging due to the low biomass and adsorption of nucleic acids to the charged clay matrix. In this study, we used quantitative PCR, gel fingerprinting, and high-throughput sequencing of 16S rRNA gene amplicons to assess DNA extraction efficiency from natural MX-80 bentonite and the same material “spiked” with Escherichia coli genomic DNA. Extraction protocols were tested without additives and with casein and phosphate as blocking agents. Although we demonstrate improved DNA recovery by blocking agents at relatively high DNA spiking concentrations, at relatively low spiking concentrations, we detected a high proportion of contaminant nucleic acids from blocking agents that masked sample-specific microbial profile data. Because bacterial genomic DNA associated with casein preparations was insufficiently removed by UV treatment, casein is not recommended as an additive for DNA extractions from low-biomass samples. Instead, we recommend a kit-based extraction protocol for bentonite clay without additional blocking agents, as tested here and validated with multiple MX-80 bentonite samples, ensuring relatively high DNA recoveries with minimal contamination. IMPORTANCE Extraction of microbial DNA from MX-80 bentonite is challenging due to low biomass and adsorption of nucleic acid molecules to the charged clay matrix. Blocking agents improve DNA recovery, but their impact on microbial community profiles from low-biomass samples has not been characterized well. In this study, we evaluated the effect of casein and phosphate as blocking agents for quantitative recovery of nucleic acids from MX-80 bentonite. Our data justify a simplified framework for analyzing microbial community DNA associated with swelling MX-80 bentonite samples within the context of a deep geological repository for used nuclear fuel. This study is among the first to demonstrate successful extraction of DNA from Wyoming MX-80 bentonite.


The Analyst ◽  
2012 ◽  
Vol 137 (17) ◽  
pp. 4023 ◽  
Author(s):  
Lindsay N. Strotman ◽  
Guangyun Lin ◽  
Scott M. Berry ◽  
Eric A. Johnson ◽  
David J. Beebe

2003 ◽  
Vol 54 (2) ◽  
pp. 165-175 ◽  
Author(s):  
Teegan Trochimchuk ◽  
John Fotheringham ◽  
Edward Topp ◽  
Heidi Schraft ◽  
Kam Tin Leung

2019 ◽  
Vol 2 (2) ◽  
pp. 40
Author(s):  
Ezzouhra El Maaiden ◽  
Youssef El Kharrassi ◽  
Abdel Khalid Essamadi ◽  
Khadija Moustaid ◽  
Boubker Nasser

Tetrahymena pyriformis (protozoa) is intensely investigated as a model organism, offering numerous advantages in comprehensive and multidisciplinary studies using morphologic or molecular methods. Since DNA extraction is a vital step of any molecular experiment, here a new mixed surfactant (Sodium dodecyl sulfate (SDS) 20%/Triton X-100) was adopted for effective DNA extraction from Tetrahymena pyriformis under an easy, fast protocol. The efficiency of this technique was then compared with three widely-used alternative techniques, namely the Chelex 100 matrix, Ammonium pyrrolidine dithiocarbamate (APD) complex and SDS–chloroform methods. DNA extraction was analyzed by pulsed-field gel electrophoresis, spectral measurement, fluorometry (Qubit), restriction enzyme digestion, and polymerase chain reaction. Data analysis revealed that the quantity and quality of the recovered DNA varied depending on the applied DNA extraction method. The new method (SDS 20%/Triton X-100) was the most efficient for extracting DNA from Tetrahymena pyriformis with high integrity and purity, affordable cost, less time, and suitability for molecular applications.


2009 ◽  
Vol 92 (4) ◽  
pp. 1136-1144 ◽  
Author(s):  
Tigst Demeke ◽  
Indira Ratnayaka ◽  
Anh Phan

Abstract The quality of DNA affects the accuracy and repeatability of quantitative PCR results. Different DNA extraction and purification methods were compared for quantification of Roundup Ready (RR) soybean (event 40-3-2) by real-time PCR. DNA was extracted using cetylmethylammonium bromide (CTAB), DNeasy Plant Mini Kit, and Wizard Magnetic DNA purification system for food. CTAB-extracted DNA was also purified using the Zymo (DNA Clean & Concentrator 25 kit), Qtip 100 (Qiagen Genomic-Tip 100/G), and QIAEX II Gel Extraction Kit. The CTAB extraction method provided the largest amount of DNA, and the Zymo purification kit resulted in the highest percentage of DNA recovery. The Abs260/280 and Abs260/230 ratios were less than the expected values for some of the DNA extraction and purification methods used, indicating the presence of substances that could inhibit PCR reactions. Real-time quantitative PCR results were affected by the DNA extraction and purification methods used. Further purification or dilution of the CTAB DNA was required for successful quantification of RR soybean. Less variability of quantitative PCR results was observed among experiments and replications for DNA extracted and/or purified by CTAB, CTAB+Zymo, CTAB+Qtip 100, and DNeasy methods. Correct and repeatable results for real-time PCR quantification of RR soybean were achieved using CTAB DNA purified with Zymo and Qtip 100 methods.


PLoS ONE ◽  
2012 ◽  
Vol 7 (3) ◽  
pp. e33127 ◽  
Author(s):  
Jiangchao Zhao ◽  
Lisa A. Carmody ◽  
Linda M. Kalikin ◽  
Jun Li ◽  
Joseph F. Petrosino ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document