A FEM-DBEM investigation of the influence of process parameters on crack growth in aluminum friction stir welded butt joints

2014 ◽  
Vol 8 (4) ◽  
pp. 591-599 ◽  
Author(s):  
Pierpaolo Carlone ◽  
Roberto Citarella ◽  
Marcello Lepore ◽  
Gaetano S. Palazzo
2013 ◽  
Vol 554-557 ◽  
pp. 2118-2126 ◽  
Author(s):  
Roberto G. Citarella ◽  
Pierpaolo Carlone ◽  
Marcello Lepore ◽  
Gaetano S. Palazzo

Medium to high strength aluminum alloys, such as 2xxx, 6xxx, and 7xxx series, are actually considered of great interest in the transport industries. For aeronautical applications, the precipitation hardenable AA2024 (Al-Cu) alloy is gaining considerable attention, in particular for the realization of nose barrier beam or fuselage panels. In this context, remarkable research effort is currently focused on the application of the Friction Stir Welding (FSW) process, as a suitable alternative to fusion welding processes. The interest in aeronautical application of FSW process is also justified by the reduction of production costs and weight and by the increase of strength and damage tolerance with respect to riveted lap joints. The implementation of the technique in safety-critical components, however, requires a deeper understanding of static strength as well as of fatigue behavior of FSWed assemblies. In this sense some experimental results have already been presented in the inherent literature, relatively, for instance, to AA6082-T6 and AA6061-T6, AA6063-T6, AA2024-T351, AA2024-T8 alloys processed by FSW. Despite the unavoidable relevance of experimental testing, a numerical approach able to predict the mechanical behavior of FSWed assemblies is very desirable, in order to achieve time and cost compression and to implement computational optimization procedures. This paper deals with a numerical investigation on the influence of FSW process parameters, namely the rotating speed and the welding speed, on fatigue crack growth in AA2024-T3 butt joints. The computational approach is based on a combined Finite Element Method (FEM) and Dual Boundary Element Method (DBEM) procedure, in order to take advantage of the main capabilities of the two methods. In particular, linear elastic FE simulations have been performed to evaluate the process induced residual stresses, by means of a recently developed technique named contour method. The computed residual stress field has then been superimposed to the stress field produced by an applied fatigue traction load in a Dual Boundary Element Method (DBEM) environment, where the simulation of a crack, initiated and propagating along the previously mentioned cutting line, can be performed in an automatic way. A two-parameters crack growth law is used for the crack propagation rate assessment. The DBEM code BEASY and the FEM code ANSYS have been sequentially coupled in the aforementioned numerical approach by using a BEASY interface module and in house developed routines. Computational results have been compared with experimental data, showing a satisfactory agreement. The influence of process parameters on the residual stresses distribution has also been highlighted.


2013 ◽  
Vol 7 (1) ◽  
pp. 18-26 ◽  
Author(s):  
Pierpaolo Carlone ◽  
Gaetano S. Palazzo

Friction Stir Welding (FSW) is an innovative solid-state joining process, which is gaining a great deal of attention in several applicative sectors. The opportune definition of process parameters, i.e. minimizing residual stresses, is crucial to improve joint reliability in terms of static and dynamic performance. Longitudinal residual stresses, induced by FSW in AA2024-T3 butt joints, have been inferred by means of a recently developed technique, namely the contour method. Two approaches to stress measurement have been adopted; the former is based on the assumption of uniform material properties, the latter takes into account microstructural effects and material properties variations in the welding zones. The influence of process parameters, namely rotating and welding speeds, on stress distribution is also discussed.


Author(s):  
M.A. Unnikrishnan ◽  
J. Edwin Raja Dhas

The requirement for structural materials with demanding properties is always a major concern among automotive researchers. Magnesium alloys possess the required properties. In this work magnesium alloys, AZ31B and AZ91B were joined by friction stir welding. The influence of process parameters on the weld properties has been studied. The process parameters were tool rotational speed, welding speed, tilt angle. Three different combinations AZ31B-AZ91B, AZ31B-AZ31B and AZ91B-AZ91B were friction stir welded. Non-destructive tests have been performed on the welded joints as the primary analysis. After mechanical testing, optical microscopic examination comprising of macrostructure analysis, microstructure analysis and SEM analysis were carried out on selected specimens and the results are formulated. The corrosion behavior of Mg alloys has been tested using a salt spray test. The thermal behavior was studied using thermogravimetric and differential thermal analysis. The joints were friction stir welded with maximum efficiency where grain refinement was observed in the weld microstructure of dissimilar alloys and the elongated grains was recrystallized. This paper primarily focuses on the microstructural aspects, corrosion performances and TG/DTA analysis.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ch. Mohana Rao ◽  
K. Mallikarjuna Rao

PurposeThe objective of the paper is to evaluate the fabrication process and to study the influence of process parameters of friction stir processing of 6061-TiB2-Al2O3 Aluminum alloy surface composite on microhardness tensile strength, and microstructure.Design/methodology/approachFriction stir processing method is used for attaining the desired mechanical properties, and selectively processed reinforcements to fabricate the samples. The Taguchi technique was used to optimize rotational speed, travel speed and volume percentage of reinforcement particles to enhance the mechanical properties of 6061-TiB2-Al2O3 Aluminum alloy composite.FindingsThe fabrication of surface composites through FSP allows new inventions in terms of material with enhanced surface layers without changing the base metal.Practical implicationsTo examine the behavior of the surface of the composites in the different zones, the practical implication consists of the use of different characterization techniques like optical microscopy and scanning microscopy for microstructural behavior and the measurement of hardness and tensile tests for mechanical behavior.Originality/valueThe research work consists of tool design and process parameters, which can affect the final product (microstructural changes), and the performance of the modified surface layer behavior was studied and presented.


2013 ◽  
Vol 753-755 ◽  
pp. 431-434 ◽  
Author(s):  
Pierpaolo Carlone ◽  
Gaetano S. Palazzo

In recent years friction stir welding process has received a great deal of attention from the transport industry. During the process, heat generation and material stirring induce significant microstructural alteration in the base material, affecting the properties of the welded assembly. In this paper the influence of process parameters, namely rotating speed and welding speed, on mechanical properties of AA2024-T3 friction stir butt welds is experimentally investigated. An increase of the yield stress has been found decreasing the heat input, while an opposite variation was measured for the elongation.


Sign in / Sign up

Export Citation Format

Share Document