A reduced single-pattern model for the numerical simulation of multi-pattern metal forming

Author(s):  
Pouya Tajdary ◽  
Léo Morin ◽  
Chedly Braham ◽  
Gonzalo Gonzalez
2011 ◽  
Vol 474-476 ◽  
pp. 251-254
Author(s):  
Jian Jun Wu ◽  
Wei Liu ◽  
Yu Jing Zhao

The multi-step forward finite element method is presented for the numerical simulation of multi-step sheet metal forming. The traditional constitutive relationship is modified according to the multi-step forming processes, and double spreading plane based mapping method is used to obtain the initial solutions of the intermediate configurations. To verify the multi-step forward FEM, the two-step simulation of a stepped box deep-drawing part is carried out as it is in the experiment. The comparison with the results of the incremental FEM and test shows that the multi-step forward FEM is efficient for the numerical simulation of multi-step sheet metal forming processes.


2013 ◽  
Vol 554-557 ◽  
pp. 1375-1381 ◽  
Author(s):  
Laurence Giraud-Moreau ◽  
Abel Cherouat ◽  
Jie Zhang ◽  
Houman Borouchaki

Recently, new sheet metal forming technique, incremental forming has been introduced. It is based on using a single spherical tool, which is moved along CNC controlled tool path. During the incremental forming process, the sheet blank is fixed in sheet holder. The tool follows a certain tool path and progressively deforms the sheet. Nowadays, numerical simulations of metal forming are widely used by industry to predict the geometry of the part, stresses and strain during the forming process. Because incremental forming is a dieless process, it is perfectly suited for prototyping and small volume production [1, 2]. On the other hand, this process is very slow and therefore it can only be used when a slow series production is required. As the sheet incremental forming process is an emerging process which has a high industrial interest, scientific efforts are required in order to optimize the process and to increase the knowledge of this process through experimental studies and the development of accurate simulation models. In this paper, a comparison between numerical simulation and experimental results is realized in order to assess the suitability of the numerical model. The experimental investigation is realized using a three-axis CNC milling machine. The forming tool consists in a cylindrical rotating punch with a hemispherical head. A subroutine has been developed to describe the tool path from CAM procedure. A numerical model has been developed to simulate the sheet incremental forming process. The finite element code Abaqus explicit has been used. The simulation of the incremental forming process stays a complex task and the computation time is often prohibitive for many reasons. During this simulation, the blank is deformed by a sequence of small increments that requires many numerical increments to be performed. Moreover, the size of the tool diameter is generally very small compared to the size of the metal sheet and thus the contact zone between the tool and the sheet is limited. As the tool deforms almost every part of the sheet, small elements are required everywhere in the sheet resulting in a very high computation time. In this paper, an adaptive remeshing method has been used to simulate the incremental forming process. This strategy, based on adaptive refinement and coarsening procedures avoids having an initially fine mesh, resulting in an enormous computing time. Experiments have been carried out using aluminum alloy sheets. The final geometrical shape and the thickness profile have been measured and compared with the numerical results. These measurements have allowed validating the proposed numerical model. References [1] M. Yamashita, M. Grotoh, S.-Y. Atsumi, Numerical simulation of incremental forming of sheet metal, J. Processing Technology, No. 199 (2008), p. 163 172. [2] C. Henrard, A.M. Hbraken, A. Szekeres, J.R. Duflou, S. He, P. Van Houtte, Comparison of FEM Simulations for the Incremental Forming Process, Advanced Materials Research, 6-8 (2005), p. 533-542.


2010 ◽  
Vol 102-104 ◽  
pp. 232-236 ◽  
Author(s):  
Zhi Feng Liu ◽  
Qi Zhang ◽  
Wen Tong Yang ◽  
Jian Hua Wang ◽  
Yong Sheng Zhao

According to the characteristic which is more and difficult to determine about the automotive panel forming factors, based on the dynamic explicit method, taking the typical automobile front fender for example, do the simulation analysis by using of DYNAFORM. On the premise of taking springback factors into account, analog the best stamping process parameters has been optimized from the analysis results after simulation such as sheet metal forming limited drawing(FLD)and sheet metal thinning drawing.


2011 ◽  
Vol 82 (7) ◽  
pp. 795-805 ◽  
Author(s):  
Nguyen Duc-Toan ◽  
Yang Seung-Han ◽  
Jung Dong-Won ◽  
Choi Tae-Hoon ◽  
Kim Young-Suk

Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1356 ◽  
Author(s):  
Marta C. Oliveira ◽  
José V. Fernandes

Numerical simulation of sheet metal forming processes has become an indispensable tool for the design of components and their forming process, in industries ranging from the automotive, to the aeronautics, packing and household appliances [...]


2019 ◽  
Vol 290 ◽  
pp. 03012
Author(s):  
Valentin Oleksik ◽  
Radu Breaz ◽  
Gabriel Racz ◽  
Paul Dan Brindasu ◽  
Octavian Bologa

The present paper analyse the main characteristics of the numerical simulation by finite element method of the deep-drawing processes. Also the authors’ highlights the mathematical apparatus and the calculus method used for numerical simulations of metal forming processes in many of the current simulation software. The authors present the capabilities of the inverse analysis, direct analysis, implicit analysis (for springback simulation) and the optimisation analysis applied to explicit formulations.


Sign in / Sign up

Export Citation Format

Share Document