Aftershock sequences of three seismic crises at southern California, USA, simulated by a cellular automata model based on self-organized criticality

2014 ◽  
Vol 19 (1) ◽  
pp. 81-95 ◽  
Author(s):  
Marisol Monterrubio ◽  
Xavier Lana ◽  
Maria Dolors Martínez
2005 ◽  
Vol 12 (1) ◽  
pp. 83-90
Author(s):  
R. Šiugždaite

The development of regional urban system still remains one of the main problems during the human race history. There are a lot of problems inside this system like overcrowded cities and decaying countryside. All these situations can be reproduced by modelling them using Cellular Automata (CA) [1, 2, 5]. CA models implement algorithms with simple rules and parameter controls, but the result can be a complex behaviour. A stability of naturally formed self‐organized urban system depends on its critical state parameter τ in the power law log(f(x)) = ‐τlog(x). If the system reaches self‐organized critical (SOC) state then it remains in it for a long time. The CA model URBACAM (URBAnistic Cellular Automata Model) describes the long‐lasting term behaviour and shows that the change in behaviour is sensitive to the urban parameter τ of the power law. Regionines urbanistines sistemos vystymasis išlieka viena iš opiausiu problemu žmonijos istorijoje. Keletas tokiu uždaviniu kaip miestu perpildymas, nykstančios kaimo vietoves ir t.t. gali būti nesunkiai modeliuojami naudojant lasteliu automatus (LA). LA metodas ypatingas tuo, kad realizuoja algoritma paprastu taisykliu bei parametru valdymo pagalba, tačiau rezultate galima gauti sudetinga elgsena. Natūraliai susiformavusiu urbanistiniu sistemu stabilumas priklauso nuo sistemos krizines savirangos būsenos (KSB) parametro τ. Jei sistema pasiekia KSB, tai ji ilga laika išlieka joje. LA modelis URBACAM charakterizuoja ilgalaike elgsena ir parodo, jog modelyje jos kitimus itakoja eksponentinio desnio urbanistinis parametras τ.


2016 ◽  
Author(s):  
Rene C. Batac ◽  
Antonino A. Paguirigan Jr. ◽  
Anjali B. Tarun ◽  
Anthony G. Longjas

Abstract. We propose a cellular automata model for earthquake occurrences patterned after the sandpile model of self-organized criticality (SOC). By incorporating a single parameter describing the probability to target the most susceptible site, the model successfully reproduces the statistical signatures of seismicity. The energy (magnitude) distributions closely follow power-law probability density functions (PDFs) with scaling exponent −5/3, consistent with the expectations of the Gutenberg–Richter (GR) law, for a wide range of the targeted-triggering probability values; this suggests that SOC mechanisms are still present in the model despite the introduction of the targeted triggering. Additionally, for targeted triggering probabilities within the range 0.004–0.007, we observe spatiotemporal distributions that show bimodal behavior, which is not observed previously for the original sandpile. For this critical range of values for the probability, model statistics show remarkable comparison with long-period empirical data from earthquakes from different seismogenic regions. The proposed model has key advantages, foremost of which is the fact that it simultaneously captures the energy, space, and time statistics of earthquakes by just introducing a single parameter, without disrupting the SOC properties of the sandpile grid. We believe that the critical targeting probability is a key requirement for SOC in seismicity, as it parametrizes the memory that is inherently present in earthquake-generating regions.


Sign in / Sign up

Export Citation Format

Share Document