A Specialized Multiphase Averaging Method for Quasiperiodic Systems of ODEs

2012 ◽  
Vol 12 (1) ◽  
pp. 225-242
Author(s):  
H. Scott Dumas
Author(s):  
Ted Janssen ◽  
Gervais Chapuis ◽  
Marc de Boissieu

The law of rational indices to describe crystal faces was one of the most fundamental law of crystallography and is strongly linked to the three-dimensional periodicity of solids. This chapter describes how this fundamental law has to be revised and generalized in order to include the structures of aperiodic crystals. The generalization consists in using for each face a number of integers, with the number corresponding to the rank of the structure, that is, the number of integer indices necessary to characterize each of the diffracted intensities generated by the aperiodic system. A series of examples including incommensurate multiferroics, icosahedral crystals, and decagonal quaiscrystals illustrates this topic. Aperiodicity is also encountered in surfaces where the same generalization can be applied. The chapter discusses aperiodic crystal morphology, including icosahedral quasicrystal morphology, decagonal quasicrystal morphology, and aperiodic crystal surfaces; magnetic quasiperiodic systems; aperiodic photonic crystals; mesoscopic quasicrystals, and the mineral calaverite.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Hengxin Ren ◽  
Ling Zeng ◽  
Yao-Chong Sun ◽  
Ken’ichi Yamazaki ◽  
Qinghua Huang ◽  
...  

AbstractIn this paper, numerical computations are carried out to investigate the seismo-electromagnetic signals arising from the motional induction effect due to an earthquake source embedded in 3-D multi-layered media. First, our numerical computation approach that combines discrete wavenumber method, peak-trough averaging method, and point source stacking method is introduced in detail. The peak-trough averaging method helps overcome the slow convergence problem, which occurs when the source–receiver depth difference is small, allowing us to consider any focus depth. The point source stacking method is used to deal with a finite fault. Later, an excellent agreement between our method and the curvilinear grid finite-difference method for the seismic wave solutions is found, which to a certain degree verifies the validity of our method. Thereafter, numerical computation results of an air–solid two-layer model show that both a receiver below and another one above the ground surface will record electromagnetic (EM) signals showing up at the same time as seismic waves, that is, the so-called coseismic EM signals. These results suggest that the in-air coseismic magnetic signals reported previously, which were recorded by induction coils hung on trees, can be explained by the motional induction effect or maybe other seismo-electromagnetic coupling mechanisms. Further investigations of wave-field snapshots and theoretical analysis suggest that the seismic-to-EM conversion caused by the motional induction effect will give birth to evanescent EM waves when seismic waves arrive at an interface with an incident angle greater than the critical angle θc = arcsin(Vsei/Vem), where Vsei and Vem are seismic wave velocity and EM wave velocity, respectively. The computed EM signals in air are found to have an excellent agreement with the theoretically predicted amplitude decay characteristic for a single frequency and single wavenumber. The evanescent EM waves originating from a subsurface interface of conductivity contrast will contribute to the coseismic EM signals. Thus, the conductivity at depth will affect the coseismic EM signals recorded nearby the ground surface. Finally, a fault rupture spreading to the ground surface, an unexamined case in previous numerical computations of seismo-electromagnetic signals, is considered. The computation results once again indicate the motional induction effect can contribute to the coseismic EM signals.


Author(s):  
Michael Rom ◽  
Florian König ◽  
Siegfried Müller ◽  
Georg Jacobs

2012 ◽  
Vol 18 (3) ◽  
pp. 243-260 ◽  
Author(s):  
Phurich Ngamkong ◽  
Pijit Kochcha ◽  
Kongpan Areerak ◽  
Sarawut Sujitjorn ◽  
Kongpol Areerak

2014 ◽  
Vol 678 ◽  
pp. 399-405
Author(s):  
Yan Mei

Bidirectional DC/DC converter is used for the battery charging and discharging. The sliding mode controller based on state space averaging algorithm is used for controlling bidirectional DC/DC converter. Two kinds of working modes, buck mode and boost mode, have been analyzed and three kinds of working states which are consisted by two working modes have been deeply discussed, and the automatic switch logic diagram when battery charging and discharging through the bidirectional DC/DC converter has been presented. Situation of system based on S1, S2 conducting alternately has been studied, and the simulations were also presented. According to the results, the characteristics of good stability and transient can be confirmed.


Sign in / Sign up

Export Citation Format

Share Document