decagonal quasicrystal
Recently Published Documents


TOTAL DOCUMENTS

247
(FIVE YEARS 19)

H-INDEX

28
(FIVE YEARS 3)

Micron ◽  
2022 ◽  
Vol 153 ◽  
pp. 103194
Author(s):  
Yi Yang ◽  
Yongjun Chen ◽  
Chuang Dong ◽  
Yanguo Wang ◽  
Xurong Wang ◽  
...  

2022 ◽  
Vol 119 (3) ◽  
pp. e2115304119
Author(s):  
Yuchu Liu ◽  
Tong Liu ◽  
Xiao-Yun Yan ◽  
Qing-Yun Guo ◽  
Huanyu Lei ◽  
...  

The quasiperiodic structures in metal alloys have been known to depend on the existence of icosahedral order in the melt. Among different phases observed in intermetallics, decagonal quasicrystal (DQC) structures have been identified in many glass-forming alloys yet remain inaccessible in bulk-state condensed soft matters. Via annealing the mixture of two giant molecules, the binary system assemblies into an axial DQC superlattice, which is identified comprehensively with meso-atomic accuracy. Analysis indicates that the DQC superlattice is composed of mesoatoms with an unusually broad volume distribution. The interplays of submesoatomic (molecular) and mesoatomic (supramolecular) local packings are found to play a crucial role in not only the formation of the metastable DQC superlattice but also its transition to dodecagonal quasicrystal and Frank–Kasper σ superlattices.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Insung Han ◽  
Kelly L. Wang ◽  
Andrew T. Cadotte ◽  
Zhucong Xi ◽  
Hadi Parsamehr ◽  
...  

AbstractQuasicrystals exhibit long-range order but lack translational symmetry. When grown as single crystals, they possess distinctive and unusual properties owing to the absence of grain boundaries. Unfortunately, conventional methods such as bulk crystal growth or thin film deposition only allow us to synthesize either polycrystalline quasicrystals or quasicrystals that are at most a few centimeters in size. Here, we reveal through real-time and 3D imaging the formation of a single decagonal quasicrystal arising from a hard collision between multiple growing quasicrystals in an Al-Co-Ni liquid. Through corresponding molecular dynamics simulations, we examine the underlying kinetics of quasicrystal coalescence and investigate the effects of initial misorientation between the growing quasicrystalline grains on the formation of grain boundaries. At small misorientation, coalescence occurs following rigid rotation that is facilitated by phasons. Our joint experimental-computational discovery paves the way toward fabrication of single, large-scale quasicrystals for novel applications.


2021 ◽  
pp. 108128652110387
Author(s):  
Yuan-Yuan Ma ◽  
Xue-Fen Zhao ◽  
Ting Zhai ◽  
Sheng-Hu Ding

In this paper, the thermal mechanical coupling problem of an infinite two-dimensional decagonal quasicrystal matrix containing elastic elliptic inclusion is studied under remote uniform loading and linear temperature variation. Combining with the theory of the sectional holomorphic function, conformal transformation, singularity analysis, Cauchy-type integral and Riemann boundary value problem, the analytic relations among the sectional functions are obtained, and the problem is transformed into a basic complex potential function equation. The closed form solutions of the temperature field and thermo-elastic field in the matrix and inclusion are obtained. The solutions demonstrate that the uniform temperature and remote uniform stresses will induce an internal uniform stress field. Numerical examples show the effects of the thermal conductivity coefficient ratio, the heat flow direction angle and the elastic modulus on the interface stresses. The results provide a valuable reference for the design and application of reinforced quasicrystal materials.


Author(s):  
Zhanbing He ◽  
Jean-Luc Maurice ◽  
Haikun Ma ◽  
Yanguo Wang ◽  
Hua Li ◽  
...  

Quasicrystals have special crystal structures with long-range order, but without translational symmetry. Unexpectedly, carousel-like successive flippings of groups of atoms inside the ∼2 nm decagonal structural subunits of the decagonal quasicrystal Al60Cr20Fe10Si10 were directly observed using in situ high-temperature high-resolution transmission electron microscopy imaging. The observed directionally successive phason flips occur mainly clockwise and occasionally anticlockwise. The origin of these directional phason flips is analyzed and discussed.


Author(s):  
Tuoya Sun ◽  
Junhong Guo ◽  
E. Pan

AbstractA mathematical model for nonlocal vibration and buckling of embedded two-dimensional (2D) decagonal quasicrystal (QC) layered nanoplates is proposed. The Pasternak-type foundation is used to simulate the interaction between the nanoplates and the elastic medium. The exact solutions of the nonlocal vibration frequency and buckling critical load of the 2D decagonal QC layered nanoplates are obtained by solving the eigensystem and using the propagator matrix method. The present three-dimensional (3D) exact solution can predict correctly the nature frequencies and critical loads of the nanoplates as compared with previous thin-plate and medium-thick-plate theories. Numerical examples are provided to display the effects of the quasiperiodic direction, length-to-width ratio, thickness of the nanoplates, nonlocal parameter, stacking sequence, and medium elasticity on the vibration frequency and critical buckling load of the 2D decagonal QC nanoplates. The results show that the effects of the quasiperiodic direction on the vibration frequency and critical buckling load depend on the length-to-width ratio of the nanoplates. The thickness of the nanoplate and the elasticity of the surrounding medium can be adjusted for optimal frequency and critical buckling load of the nanoplate. This feature is useful since the frequency and critical buckling load of the 2D decagonal QCs as coating materials of plate structures can now be tuned as one desire.


2021 ◽  
pp. 108128652098161
Author(s):  
Yunzhi Huang ◽  
Min Zhao ◽  
Miaolin Feng

A three-dimensional (3D) electric–elastic analysis of multilayered two-dimensional decagonal quasicrystal (QC) circular plates with simply supported or clamped boundary conditions is presented through a state vector approach. Both perfect and imperfect bonds between the layers are considered by adjusting the parameter sets in the model. Governing equations for the plates subjected to electric or elastic load on the bottom surfaces are derived using the state equations and the propagator matrix method. We explicitly obtain the analytical solution by writing the physical variables as Bessel series expansions and polynomial functions with respect to the radial coordinate. The solution is validated by comparing the numerical results with the 3D finite element analysis. The basic physical quantities of the plates in the phonon, phason, and electric fields are computed in the numerical examples. Result shows that the QC layers as coatings decrease the deflection in the phonon and phason fields of plates. The phonon–phason coupling elastic modulus and piezoelectric constant produce positive and negative effects on the magnitudes of stresses. Besides, compliance coefficients of the weak interface in the phonon field contribute more to the variations than those in the phason field.


IUCrJ ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 87-101
Author(s):  
Ireneusz Buganski ◽  
Luca Bindi

A set of X-ray data collected on a fragment of decagonite, Al71Ni24Fe5, the only known natural decagonal quasicrystal found in a meteorite formed at the beginning of the Solar System, allowed us to determine the first structural model for a natural quasicrystal. It is a two-layer structure with decagonal columnar clusters arranged according to the pentagonal Penrose tiling. The structural model showed peculiarities and slight differences with respect to those obtained for other synthetic decagonal quasicrystals. Interestingly, decagonite is found to exhibit low linear phason strain and a high degree of perfection despite the fact it was formed under conditions very far from those used in the laboratory.


Author(s):  
Haikun Ma ◽  
Liangqun Zhao ◽  
Zhi-Yi Hu ◽  
Dinghao Miao ◽  
Ruixuan Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document