scholarly journals Accounting for residual activity in the estimate of myocardial blood flow with PET

Author(s):  
Jonathon A. Nye ◽  
C. David Cooke
2001 ◽  
Vol 40 (05) ◽  
pp. 164-171 ◽  
Author(s):  
B. Nowak ◽  
H.-J. Kaiser ◽  
S. Block ◽  
K.-C. Koch ◽  
J. vom Dahl ◽  
...  

Summary Aim: In the present study a new approach has been developed for comparative quantification of absolute myocardial blood flow (MBF), myocardial perfusion, and myocardial metabolism in short-axis slices. Methods: 42 patients with severe CAD, referred for myocardial viability diagnostics, were studied consecutively with 0-15-H2O PET (H2O-PET) (twice), Tc-99m-Tetrofosmin 5PECT (TT-SPECT) and F-18-FDG PET (FDG-PET). All dato sets were reconstructed using attenuation correction and reoriented into short axis slices. Each heart was divided into three representative slices (base, rnidventricular, apex) and 18 ROIs were defined on the FDG PET images and transferred to the corresponding H2O-PET and TT-SPECT slices. TT-SPECT and FDG-PET data were normalized to the ROI showing maximum perfusion. MBF was calculated for all left-ventricular ROIs using a single-compartment-model fitting the dynamic H2O-PET studies. Microsphere equivalent MBF (MBF_micr) was calculated by multiplying MBF and tissue-fraction, a parameter which was obtained by fitting the dynamic H2O-PET studies. To reduce influence of viability only well perfused areas (>70% TT-SPECT) were used for comparative quantification. Results: First and second mean global MBF values were 0.85 ml × min-1 × g-1 and 0.84 ml × min-1 × g1, respectively, with a repeatability coefficient of 0.30 ml ÷ min-1 × gl. After sectorization mean MBF_micr was between 0.58 ml × min1 ÷ ml"1 and 0.68 ml × min-1 × ml"1 in well perfused areas. Corresponding TT-SPECT values ranged from 83 % to 91 %, and FDG-PET values from 91 % to 103%. All procedures yielded higher values for the lateral than the septal regions. Conclusion: Comparative quantification of MBF, MBF_micr, TT-SPECT perfusion and FDG-PET metabolism can be done with the introduced method in short axis slices. The obtained values agree well with experimentally validated values of MBF and MBF_micr.


2009 ◽  
Vol 5 (2) ◽  
pp. 15
Author(s):  
Wanda Acampa ◽  
Mario Petretta ◽  
Carmela Nappi ◽  
Alberto Cuocolo ◽  
◽  
...  

Many non-invasive imaging techniques are available for the evaluation of patients with known or suspected coronary heart disease. Among these, computed-tomography-based techniques allow the quantification of coronary atherosclerotic calcium and non-invasive imaging of coronary arteries, whereas nuclear cardiology is the most widely used non-invasive approach for the assessment of myocardial perfusion. The available single-photon-emission computed tomography flow agents are characterised by a cardiac uptake proportional to myocardial blood flow. In addition, different positron emission tomography tracers may be used for the quantitative measurement of myocardial blood flow and coronary flow reserve. Extensive research is being performed in the development of non-invasive coronary angiography and myocardial perfusion imaging using cardiac magnetic resonance. Finally, new multimodality imaging systems have recently been developed bringing together anatomical and functional information. This article provides a description of the available non-invasive imaging techniques in the assessment of coronary anatomy and myocardial perfusion in patients with known or suspected coronary heart disease.


2018 ◽  
Vol 24 (25) ◽  
pp. 2950-2953
Author(s):  
Sasko Kedev ◽  
Ivan Vasilev

Functional tests used in the catheterization laboratory have emerged as a very important adjunctive tool to coronary angiography that can identify patients with myocardial blood flow impairment. Fractional Flow Reserve (FFR) measurement is highly recommended for detection of ischemia-related coronary lesion(s) when objective evidence of vessel-related ischemia is not available. Recently, the much simpler instantaneous wave free ratio (iFR) was proposed as an alternative to FFR without the requirement for administration of vasodilators. More user-friendly techniques like iFR might further contribute to value-based care in coronary interventions.


Circulation ◽  
1995 ◽  
Vol 92 (4) ◽  
pp. 796-804 ◽  
Author(s):  
Danilo Neglia ◽  
Oberdan Parodi ◽  
Michela Gallopin ◽  
Gianmario Sambuceti ◽  
Assuero Giorgetti ◽  
...  

Circulation ◽  
1995 ◽  
Vol 91 (5) ◽  
pp. 1381-1388 ◽  
Author(s):  
Ernest L. Fallen ◽  
Claude Nahmias ◽  
Anita Scheffel ◽  
Geoff Coates ◽  
Rob Beanlands ◽  
...  

Circulation ◽  
1995 ◽  
Vol 92 (2) ◽  
pp. 244-252 ◽  
Author(s):  
Andrew E. Arai ◽  
Susan E. Grauer ◽  
Cheryl G. Anselone ◽  
George A. Pantely ◽  
J. David Bristow

1962 ◽  
Vol 203 (1) ◽  
pp. 122-124 ◽  
Author(s):  
J. A. Herd ◽  
M. Hollenberg ◽  
G. D. Thorburn ◽  
H. H. Kopald ◽  
A. C. Barger

Serial, rapid measurements of left ventricular myocardial blood flow in trained, unanesthetized dogs have been made by injecting krypton 85 through chronically implanted coronary artery catheters and counting with an external scintillation detector. Precordial radioactivity declined as a single exponential function during the first 2 min after injection, suggesting a single rate of myocardial blood flow. Simultaneous estimations with Kr85 and blood flowmeters in acute experiments established the accuracy and reproducibility of the technique. Myocardial blood flows between 40 and 55 ml/100 g/min were observed repeatedly in three well-trained, unanesthetized dogs in the basal state.


Sign in / Sign up

Export Citation Format

Share Document