Spatio-temporal analysis and estimation of rainfall variability in and around upper Godavari River basin, India

2019 ◽  
Vol 12 (22) ◽  
Author(s):  
Sainath Aher ◽  
Sambhaji Shinde ◽  
Praveen Gawali ◽  
Pragati Deshmukh ◽  
Lakshmi B. Venkata
Atmósfera ◽  
2020 ◽  
Author(s):  
Vinicius Alexandre Sikora de Souza ◽  
Daniel Medeiros Moreira ◽  
Otto Corrêa Rotunno Filho ◽  
Anderson Paulo Rudke ◽  
Claudia Daza Andrade ◽  
...  

Rainfall is recognized as the most important driving force of the hydrologic cycle. To accurately represent the spatio-temporal rainfall variability continues to be an enormous hydrological task when using commonly sparse, if available, rain gauges networks. Therefore, the present study devoted a special effort to analyze the robustness of some satellite rainfall products, notably the datasets hereafter named as (i) CHIRP (Climate Hazards Group InfraRed Precipitation), (ii) CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data), (iii) 3B42, and (iv) 3B42RT of the Tropical Rainfall Measuring Mission (TRMM), to adequately represent the pluviometric regime in the Madeira river basin. To assess the accuracy of acquired remotely sensed rainfall products, comparisons to observational available rain gauges usually taken as ground-truth in the literature, despite their well-known limitations, were performed. Wavelet analysis was also used to validate the performance of the referred satellite products by means of extracting the corresponding cycles, frequencies, and tendencies along the available time series across the studied basin. The results showed that the data sources CHIRPS and CHIRP better represent the pluviometric phenomenon by means of their monthly accumulated rainfall in the Madeira river basin when compared to the 3B42 and 3B42RT products taking into account rain gauges as baseline information. The CHIRPS product performed the best among the selected rainfall estimators for the Madeira river basin. Further analysis brought up also another very interesting result related to non-rainfall periods, which is usually not reported. However, such evaluation is quite important in hydrology when examining run sequences of droughts and consequent effects in the water balance at the watershed scale. Highly accurate estimates in the sense of identifying non-rainfall periods by remotely sensed information was achieved, which represents an additional and valuable asset of satellite rainfall products. It is worthwhile to say that this perspective deserves to receive much more attention in the literature in order to deeply discuss the water-energy-food nexus.


2019 ◽  
Vol 12 (1) ◽  
pp. 83-93 ◽  
Author(s):  
Ebenezer Boakye ◽  
F. O. K. Anyemedu ◽  
Jonathan A. Quaye-Ballard ◽  
Emmanuel A. Donkor

2019 ◽  
Vol 19 (7) ◽  
pp. 2041-2054 ◽  
Author(s):  
Nafiseh Haghtalab ◽  
Nathan Moore ◽  
Cosmo Ngongondo

Author(s):  
Han Wu ◽  
Donghong Xiong ◽  
Bintao Liu ◽  
Su Zhang ◽  
Yong Yuan ◽  
...  

Drought is one of the most frequent meteorological disasters, and has exerted significant impacts on the livelihoods and economy of the Koshi River Basin (KRB). In this study, we assessed drought patterns using the Crop Water Shortage Index (CWSI) based on the MOD16 product for the period between 2000 and 2014. The results revealed that the CWSI based on the MOD16 product can be act as an indicator to monitor the characteristics of the drought. Significant spatial heterogeneity of drought was observed in the basin, with higher CWSI values downstream and upstream than in the midstream. The midstream of the KRB was dominated by light drought, moderate drought occurred in the upstream, and the downstream was characterized by severe drought. The monthly CWSI during one year in KRB showed the higher CWSI between March to May (pre-monsoon) and October to December (post-monsoon) rather than June to September (monsoon), and the highest was observed in the month of April, suggesting that precipitation plays the most important role in the mitigation of CWSI. Additionally, the downstream and midstream showed a higher variation of drought compared to the upstream in the basin. This research indicates that the downstream suffered severe drought due to seasonal water shortages, especially during the pre-monsoon, and water-related infrastructure should be implemented to mitigate losses caused by drought.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 763
Author(s):  
Harry West ◽  
Nevil Quinn ◽  
Michael Horswell

The North Atlantic Oscillation (NAO) is the primary atmospheric-oceanic circulation/teleconnection influencing regional climate in Great Britain. As our ability to predict the NAO several months in advance increases, it is important that we improve our spatio-temporal understanding of the rainfall signatures that the circulation produces. We undertake a high resolution spatio-temporal analysis quantifying variability in rainfall response to the NAO across Great Britain. We analyse and map monthly NAO-rainfall response variability, revealing the spatial influence of the NAO on rainfall distributions, and particularly the probability of wet and dry conditions/extremes. During the winter months, we identify spatial differences in the rainfall response to the NAO between the NW and SE areas of Britain. The NW area shows a strong and more consistent NAO-rainfall response, with greater probability of more extreme wet/dry conditions. However, greater NAO-rainfall variability during winter was found in the SE. The summer months are marked by a more spatially consistent rainfall response; however, we find that there is variability in both wet/dry magnitude and directionality. We note the implications of these spatially and temporally variable NAO-rainfall responses for regional hydrometeorological predictions and highlight the potential explanatory role of other atmospheric-oceanic circulations.


Sign in / Sign up

Export Citation Format

Share Document