scholarly journals Spatio-Temporal Variability in North Atlantic Oscillation Monthly Rainfall Signatures in Great Britain

Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 763
Author(s):  
Harry West ◽  
Nevil Quinn ◽  
Michael Horswell

The North Atlantic Oscillation (NAO) is the primary atmospheric-oceanic circulation/teleconnection influencing regional climate in Great Britain. As our ability to predict the NAO several months in advance increases, it is important that we improve our spatio-temporal understanding of the rainfall signatures that the circulation produces. We undertake a high resolution spatio-temporal analysis quantifying variability in rainfall response to the NAO across Great Britain. We analyse and map monthly NAO-rainfall response variability, revealing the spatial influence of the NAO on rainfall distributions, and particularly the probability of wet and dry conditions/extremes. During the winter months, we identify spatial differences in the rainfall response to the NAO between the NW and SE areas of Britain. The NW area shows a strong and more consistent NAO-rainfall response, with greater probability of more extreme wet/dry conditions. However, greater NAO-rainfall variability during winter was found in the SE. The summer months are marked by a more spatially consistent rainfall response; however, we find that there is variability in both wet/dry magnitude and directionality. We note the implications of these spatially and temporally variable NAO-rainfall responses for regional hydrometeorological predictions and highlight the potential explanatory role of other atmospheric-oceanic circulations.

2020 ◽  
Author(s):  
Harry West ◽  
Nevil Quinn ◽  
Michael Horswell

<p>The North Atlantic Oscillation (NAO) is one of the primary atmospheric circulations which influence weather patterns in Great Britain. Its two phases (either positive or negative depending on differences in sea level pressure) result in characteristic precipitation patterns, the effects of which cascade down to signatures in streamflow. However, in relation to streamflow response to the NAO, these studies have been spatio-temporally limited as they have been undertaken using a small number of measurement sites with relatively short records.</p><p>The release of new historic datasets from the UK Centre for Ecology and Hydrology (CEH) provides a new opportunity to undertake a broad spatio-temporal analysis of the relationship between NAO and streamflow. This research used reconstructed daily flows for 291 catchments and the associated Standardised Streamflow Index (SSI) to explore the relationship between the North Atlantic Oscillation Index (NAOI) for the period January 1900-November 2015. Spearman correlations were calculated at monthly intervals between the NAOI and SSI (with a 1-month accumulation period), and the historic flows dataset was used to explore the variability in flows across the catchments under NAO+ and NAO- phases.</p><p>This analysis revealed distinct wet and dry spatio-temporal signatures in streamflow. The winter months are characterised by a north-west and south-east divide in this relationship; catchments in the northern and western regions show strong positive correlations between the NAOI and SSI and NAO+ is associated with higher than normal flows in many north-western catchments, and vice versa under NAO-. While catchments in the south-eastern and central regions are negatively correlated and therefore show and opposite wet-dry response. However, during the summer months, while there are some wet-dry signatures under NAO positive/negative phases - the reverse to that seen in winter, almost all catchments show weak NAOI-SSI negative correlation values. </p><p>Finally, we compare the wet-dry responses to the NAO observed in streamflow to NAO-precipitation patterns, measured via correlations between the NAOI and Standardised Precipitation Index with a 1-month accumulation period over the same study period. The two sets of correlations (NAO-SPI and NAO-SSI) were analysed for spatio-temporal similarity through a Geographically Weighted Regression (GWR) analysis and a space-time clustering analysis. This revealed that in winter, as described above, the correlations with SPI and SSI generally behave similarly during the winter months – i.e. the wet-dry signatures in rainfall cascade down and are identifiable in streamflow patterns. In the summer months the NAOI-SPI correlations for the majority of catchments are negative. In the NAOI-SSI correlations, the summer values, while still negative, are notably weaker. The catchments with the weakest NAOI-SSI correlations are those generally in the central/southern region. These catchments have very slow response times due to their characteristics which may moderate the NAO wet/dry rainfall deviation.</p>


2019 ◽  
Vol 12 (22) ◽  
Author(s):  
Sainath Aher ◽  
Sambhaji Shinde ◽  
Praveen Gawali ◽  
Pragati Deshmukh ◽  
Lakshmi B. Venkata

Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1533
Author(s):  
Harry West ◽  
Nevil Quinn ◽  
Michael Horswell

Atmospheric-oceanic circulations (teleconnections) have an important influence on regional climate. In Great Britain, the North Atlantic Oscillation (NAO) has long been understood as the leading mode of climate variability, and its phase and magnitude have been found to influence regional rainfall in previous research. The East Atlantic Pattern (EA) is also increasingly recognised as being a secondary influence on European climate. In this study we use high resolution gridded rainfall and Standardised Precipitation Index (SPI) time series data for Great Britain to map the monthly rainfall signatures of the NAO and EA over the period January 1950–December 2015. Our analyses show that the influence of the two teleconnections varies in space and time with distinctive monthly signatures observed in both average rainfall/SPI-1 values and incidences of wet/dry extremes. In the winter months the NAO has a strong influence on rainfall and extremes in the north-western regions. Meanwhile, in the southern and central regions stronger EA-rainfall relationships are present. In the summer months opposing positive/negative phases of the NAO and EA result in stronger wet/dry signatures which are more spatially consistent. Our findings suggest that both the NAO and EA have a prominent influence on regional rainfall distribution and volume in Great Britain, which in turn has implications for the use of teleconnection forecasts in water management Decemberision making. We conclude that accounting for both NAO and EA influences will lead to an enhanced understanding of both historic and future spatial distribution of monthly precipitation.


2011 ◽  
Vol 8 (3) ◽  
pp. 4459-4493 ◽  
Author(s):  
J. Lorenzo-Lacruz ◽  
S. M. Vicente-Serrano ◽  
J. I. López-Moreno ◽  
J. C. González-Hidalgo ◽  
E. Morán-Tejeda

Abstract. In this study we analyzed the influence of the North Atlantic Oscillation (NAO) on the streamflow in 187 sub-basins of the Iberian Peninsula. Monthly and one-month lagged correlations were conducted to assess the spatio-temporal extent of the NAO influence on Iberian river discharges. Analysis of the persistence of the winter NAO throughout the year was also undertaken, together with analysis of streamflow anomalies during positive and negative NAO phases. Moving-window correlation analyses were conducted to assess potential changes in the temporal evolution of the NAO influence on Iberian streamflows. The results show that the NAO has a large impact on surface water resources throughout the Iberian Peninsula during winter, and in the Atlantic watershed during autumn. We showed that water resources management and snowmelt are causing the persistent dependence of streamflows on the previous winter NAO. We found that strongly positive streamflow anomalies occurred during winter, especially in the Atlantic watershed, and provide evidence of non-stationarity and spatial variability in the NAO influence on Iberian water resources.


2019 ◽  
Vol 19 (7) ◽  
pp. 2041-2054 ◽  
Author(s):  
Nafiseh Haghtalab ◽  
Nathan Moore ◽  
Cosmo Ngongondo

Sign in / Sign up

Export Citation Format

Share Document