Morphometric analysis to characterize the soil erosion susceptibility in the western part of lower Gangetic River basin, India

2021 ◽  
Vol 14 (6) ◽  
Author(s):  
Raj Kumar Bhattacharya ◽  
Nilanjana Das Chatterjee ◽  
Prasenjit Acharya ◽  
Kousik Das
1995 ◽  
Vol 22 (1) ◽  
pp. 20-30 ◽  
Author(s):  
Nandini Chatterjee

Social Forestry (SF) schemes have been implemented in India since the 1980s to combat deforestation, increase the supply of fuel-wood and fodder, and provide minor forest products for the rural populaton. The relevance of such Schemes in the Mayurakshi River Basin is basically due to its environmentally degraded state. Latterly the Basin has been brought under the Mayurakshi River Valley Project, but unless measures are undertaken to mitigate problems of soil erosion, the efficiency of the Project will be hampered.


Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 39 ◽  
Author(s):  
Lifeng Yuan ◽  
Kenneth J. Forshay

Soil erosion and lake sediment loading are primary concerns of watershed managers around the world. In the Xinjiang River Basin of China, severe soil erosion occurs primarily during monsoon periods, resulting in sediment flow into Poyang Lake and subsequently causing lake water quality deterioration. Here, we identified high-risk soil erosion areas and conditions that drive sediment yield in a watershed system with limited available data to guide localized soil erosion control measures intended to support reduced sediment load into Poyang Lake. We used the Soil and Water Assessment Tool (SWAT) model to simulate monthly and annual sediment yield based on a calibrated SWAT streamflow model, identified where sediment originated, and determined what geographic factors drove the loading within the watershed. We applied monthly and daily streamflow discharge (1985–2009) and monthly suspended sediment load data (1985–2001) to Meigang station to conduct parameter sensitivity analysis, calibration, validation, and uncertainty analysis of the model. The coefficient of determination (R2), Nash–Sutcliffe efficiency (NSE), percent bias (PBIAS), and RMSE -observation’s standard deviation ratio (RSR) values of the monthly sediment load were 0.63, 0.62, 3.8%, and 0.61 during calibration, respectively. Spatially, the annual sediment yield rate ranged from 3 ton ha−1year−1 on riparian lowlands of the Xinjiang main channel to 33 ton ha−1year−1 on mountain highlands, with a basin-wide mean of 19 ton ha−1year−1. The study showed that 99.9% of the total land area suffered soil loss (greater than 5 ton ha−1year−1). More sediment originated from the southern mountain highlands than from the northern mountain highlands of the Xinjiang river channel. These results suggest that specific land use types and geographic conditions can be identified as hotspots of sediment source with relatively scarce data; in this case, orchards, barren lands, and mountain highlands with slopes greater than 25° were the primary sediment source areas. This study developed a reliable, physically-based streamflow model and illustrates critical source areas and conditions that influence sediment yield.


2021 ◽  
Author(s):  
Li Wang ◽  
Fan Zhang ◽  
Guanxing Wang

<p>The impact of climate change on soil erosion is pronounced in high mountain area. In this study, the revised universal soil loss equation (RUSLE) model was improved for better calculation of soil erosion during snowmelt period by integrating a distributed hydrological model in upper Heihe river basin (UHRB). The results showed that the annual average soil erosion rate from 1982 to 2015 in the study area was 8.1 t ha<sup>-1 </sup>yr<sup>-1</sup>, belonging to the light grade. To evaluate the influence of climate change on soil erosion, detrended analysis of precipitation, temperature and NDVI was conducted. It was found that in detrended analysis of precipitation and temperature, the soil erosion of UHRB would decrease 26.5% and 3.0%, respectively. While in detrended analysis of NDVI, soil erosion would increase 9.9%. Compared with precipitation, the effect of temperature on total soil erosion was not significant, but the detrended analysis of temperature showed that the effect of temperature on soil erosion during snowmelt period can reach 70%. These finding were helpful for better understanding of the impact of climate change on soil erosion and provide a scientific basis for soil management in high mountain area under climate change in the future.</p>


2021 ◽  
Vol 58 (03) ◽  
pp. 286-299
Author(s):  
Mahesh Chand Singh ◽  
Rohit Singh ◽  
Abrar Yousuf ◽  
Vishnu Prasad

The present study examined 35 morphometric parameters related to stream/drainage network, catchment geometry, and relief aspects for hydrological characterization of the Thana Dam catchment using geospatial tools and techniques. The dam catchment was delineated using the high-resolution Advanced Land Observing Satellite Phased Array type L-band Synthetic Aperture Radar (ALOS PALSAR) Digital Elevation Model (DEM) data in ArcGIS 10.4.1 software using the Arc Hydro tools. The catchment is comprised of 4th order stream, obtained using a stream threshold value of 100 m length. The lower values of elongation ratio (0.61), circularity ratio (0.22), and form factor (0.29) indicated higher soil erosion potential, mainly due to their inverse relationship with land erodibility. Moreover, the higher values of stream frequency (15.7), drainage density (>5.0), drainage texture (7.48 km-1), and mean bifurcation ratio (4.08-6.33) indicated higher runoff potential, which would intensify the soil erosion, mainly due to their direct relationship with erodibility. Bifurcation ratio, elongation ratio, circulatory ratio, form factor, altogether indicated an elongated shape of the catchment with a fine drainage texture. The higher values of bifurcation ratio and texture ratio of the catchment also indicated severe overland flow (low infiltration rate) with a limited scope for groundwater recharge in the area, which in turn might significantly encourage the soil erosion. Overall, it was concluded that the catchment has a huge runoff potential resulting in high soil erosion due to its fine texture, impermeable subsurface material, steep slope, low infiltration rate, limited vegetation, longer duration of overland flow, and higher surface runoff. The morphometric analysis was found to be suitable for identifying catchment shape and the factors affecting hydrologic conditions and erodibility of the catchment. Thus, Geo-informatics based morphometric analysis of a reservoir catchment can be useful to study the erosion potential in relation to hydrologic (rainfall-runoff relationship) and other related land characteristics (e.g., relief, slope, infiltration rate, etc.).


Sign in / Sign up

Export Citation Format

Share Document