runoff potential
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 15)

H-INDEX

7
(FIVE YEARS 2)

2022 ◽  
Vol 34 (1) ◽  
Author(s):  
Ana Claudia Pereira Carvalho ◽  
Reinaldo Lorandi ◽  
José Augusto Di Lollo ◽  
Eduardo Goulart Collares ◽  
Luiz Eduardo Moschini

Use of water for several human needs, associated with climate change, indicates the need understand the response of watersheds, in order to provide adequate water resources planning and management. This study was carried out in two pairs of hydrographic watersheds, in the Piracicaba River Basin, southeast of Brazil, analyzing water response, integrating in-situ collected precipitation and flow data, natural environment attributes, and anthropic environmental data. To support the analysis, Surface Runoff Potential Charts (SRPC). The evaluation of the physical characteristics of the sub watersheds (SW(A) and SW(B)) shows that these areas present very low to low potential, indicating greater infiltration capacity. The use and coverage of the soil partially justifies the flow changes in pair 1, since SW(A) has a larger extent of agricultural areas that can use irrigation. SW(B), even with a greater variety of crops, has a smaller cultivated area and tends to demand less water. At pair 2, the low runoff potential is mainly due to the predominance of flat relief in the sub-basins. The soils that compose them present a higher fraction of silt and clay, with thicknesses > 5m in SW(C) and varying from 0.5m, reaching depths above 5m in SW(D), however, the physical properties of these soils do not provide a low flow rate, but associated with the low slope of the land, the geological characteristics and low drainage density are configured in regions where the flow flows more slowly, contributing to the evaporation and infiltration process. The use and coverage of the soil also partially justifies the flow oscillations, due to anthropic activities in SW(C) and SW(D), such as irrigation and spraying of citrus, fertirrigation of sugarcane, irrigation of seedling nurseries, directly interfering with the availability of surface water.


2021 ◽  
Vol 58 (03) ◽  
pp. 286-299
Author(s):  
Mahesh Chand Singh ◽  
Rohit Singh ◽  
Abrar Yousuf ◽  
Vishnu Prasad

The present study examined 35 morphometric parameters related to stream/drainage network, catchment geometry, and relief aspects for hydrological characterization of the Thana Dam catchment using geospatial tools and techniques. The dam catchment was delineated using the high-resolution Advanced Land Observing Satellite Phased Array type L-band Synthetic Aperture Radar (ALOS PALSAR) Digital Elevation Model (DEM) data in ArcGIS 10.4.1 software using the Arc Hydro tools. The catchment is comprised of 4th order stream, obtained using a stream threshold value of 100 m length. The lower values of elongation ratio (0.61), circularity ratio (0.22), and form factor (0.29) indicated higher soil erosion potential, mainly due to their inverse relationship with land erodibility. Moreover, the higher values of stream frequency (15.7), drainage density (>5.0), drainage texture (7.48 km-1), and mean bifurcation ratio (4.08-6.33) indicated higher runoff potential, which would intensify the soil erosion, mainly due to their direct relationship with erodibility. Bifurcation ratio, elongation ratio, circulatory ratio, form factor, altogether indicated an elongated shape of the catchment with a fine drainage texture. The higher values of bifurcation ratio and texture ratio of the catchment also indicated severe overland flow (low infiltration rate) with a limited scope for groundwater recharge in the area, which in turn might significantly encourage the soil erosion. Overall, it was concluded that the catchment has a huge runoff potential resulting in high soil erosion due to its fine texture, impermeable subsurface material, steep slope, low infiltration rate, limited vegetation, longer duration of overland flow, and higher surface runoff. The morphometric analysis was found to be suitable for identifying catchment shape and the factors affecting hydrologic conditions and erodibility of the catchment. Thus, Geo-informatics based morphometric analysis of a reservoir catchment can be useful to study the erosion potential in relation to hydrologic (rainfall-runoff relationship) and other related land characteristics (e.g., relief, slope, infiltration rate, etc.).


Water SA ◽  
2021 ◽  
Vol 47 (3 July) ◽  
Author(s):  
F Nyirenda ◽  
A Mhizha ◽  
W Gumindoga ◽  
A Shumba

A GIS-based approach for identifying suitable sites for rainwater harvesting (RWH) technologies was developed and applied in Kasungu District, Malawi. Data were obtained from reports, socio-economic survey documents of the area and maps. Field surveys were conducted in the villages of Chipala Extension Planning Area (EPA), in order to identify and evaluate the performance of existing RWH interventions, and determine factors for locating suitable areas for RWH. Observed soil moisture content was used to assess the water retention performance of the prevalent RWH technologies: contour tied ridging and soil mulching. A GIS-based Soil Conservation Service Curve Number (SCS-CN) method was used to map runoff potential for areas with RWH technologies, using physical factors of rainfall, land use, soil type and slope to estimate runoff potential. This was then integrated in a GIS database, with social-economic factors in the form of household income level and environmental factors, including impacts of implementing RWH, to determine the suitability of land areas for RWH in Kasungu District. One way analysis of variance (ANOVA) was used to test the impact of identified technologies by comparing the moisture content measurements for each of the identified technologies at 5% level of significance. The ANOVA results showed a statistically significant difference in the moisture measurements for the three technologies identified (P < 0.05). The RWH suitability map for the study area showed that 0.2% of the area considered had very high potential, 33.5% high, 55.9% moderate, 10.1% marginal and 0.3% not suitable for in-field RWH. The model was verified by locating the existing RWH on the suitability map obtained from GIS: 81% of RWH were located in the highly and moderately suitable areas whilst only 13% were located in areas of low suitability. Hence the developed model can reliably be used to predict potential areas for RWH.


Author(s):  
A. L. Kozhanov ◽  
◽  
A. A. Kirilenko ◽  
D. V. Grushko ◽  
◽  
...  

Purpose: to assess the drainage runoff potential in Russia for humidification purposes using drainage-watering systems. Materials and methods. The informational basis of the research was made up of information received from federal state budgetary institutions on land reclamation and agricultural water supply, in the context of the diverted drainage runoff volume from drainage, drainage-watering and drainage-irrigation systems of double soil water regime control as well as data from annual monitoring. The following software products Microsoft Excel, ArcGIS, MathCAD were used to process the data on drainage runoff indicators. General scientific methods were used to analyze the data obtained on drainage runoff volume and graphic material. Results. When quantifying the drainage runoff volume and its mineralization, complications associated with a shortage, and in some cases with a lack of data on drainage runoff from reclamation systems arose. Based on the data received, 22 regions with operating drainage reclamation systems were identified. For each reclamation system, the drainage runoff volume and the total area of drained lands were determined. The regions with the largest, sufficient and insignificant volumes runoff have been identified. For some regions, data on the salinity of the drainage runoff were obtained and analyzed. Conclusions. As a result of analysis it was revealed that almost 50 % of the territories served by drainage systems can be moistened with drainage runoff in full volume of all serviced areas with accumulation in regulating tanks; in the rest of the regions additional water withdrawal from the water source is required. Indicators of drainage runoff salinity are 0.22–1.60 g/l, in some systems they reach 2.1–4.7 g/l, which indicates the possibility of using agricultural crops in irrigation on various types of soils and for fish farming.


2020 ◽  
Vol 13 (1) ◽  
pp. 83
Author(s):  
Md Moniruzzaman ◽  
Praveen K. Thakur ◽  
Pramod Kumar ◽  
Md. Ashraful Alam ◽  
Vaibhav Garg ◽  
...  

Rapid urban growth processes give rise to impervious surfaces and are regarded as the primary cause of urban flooding or waterlogging in urban areas. The high rate of urbanization has caused waterlogging and urban flooding in many parts of Dhaka city. Therefore, the study is undertaken to quantify the changes in land use/land cover (LULC) and urban runoff extent based on the Natural Resources Conservation Service (NRCS) Curve Number (CN) during 1978–2018. The five-decadal LULC has been analyzed using three-generation Landsat time-series data considering six different classes, namely agriculture, built-up, wetland, open land, green spaces, and water bodies for the years 1978, 1988, 1998, 2007, and 2018. Significant changes in LULC for the study area from 1978–2018 are observed as 13.1%, 4.8%, and 7.8% reduction in agricultural land, green spaces, and water bodies, respectively, and a 22.1% increase in the built-up area is estimated. Within Dhaka city, 14.6%, 16.0%, and 12.3% reduction in agricultural land, green spaces, and water bodies, respectively, and a radical increase of 41.9% in built-up area are reckoned. The decadal runoff assessment has been carried out using the NRCS-CN method, considering an extreme rainfall event of 341 mm/day (13 September 2004). The catchment area under very high runoff category is observed as 159.5 km2 (1978) and 318.3 km2 (2018), whereas, for Dhaka city, the setting is dynamic as the area under the very high runoff category has increased from 74.24 km2 (24.44%) to 174.23 km2 (57.36%) in years 1978 and 2018, respectively, and, mostly, the very high runoff potential areas correspond to the dense built-up surfaces.


Author(s):  
Lucas Kister Amaral ◽  
Sabrina Baesso Cadorin ◽  
Álvaro José Back ◽  
Fernanda Dagostin Szymanski ◽  
Claudia Weber Corseuil

Water erosion is a factor of soil degradation that is triggered by the impact of raindrops originated by intense rainfall disaggregating the soil, followed by the carrying of particles by surface runoff. In the erosion process, in addition to soil loss, nutrients, fertilizers, and pesticides are carried resulting in water courses and water pollution. Erosion can have a major impact on agricultural production, when soil use and management techniques are not used. Therefore, this study aimed to evaluate the soil loss in the Malacara river basin, which is a sub-basin of the Mampituba river basin characterized by a contrasting relief, with high altitudes in the escarps of Serra Geral and floodplain. The method used for the development of this research was the application of the Universal Soil Loss Equation (USLE). USLE soil loss estimation requires the following factors: rainfall erosivity (R), soil erodibility (K), slope length (L), slope steepness (S), soil use and management (C), and erosion control practice factor (P). The estimated rainfall erosivity was 5,754.2 MJ mm ha-1 h-1 year-1. Erodibility was determined for the soils present in the basin, highlighting a high value for gleysoil. The topographic factor (LS) showed values from 0 to greater than 20, which corresponds to the low to very high runoff potential. The floodplain showed lower runoff rates, while for the locations close to the enclosed valleys in the Malacara canyon, the runoff potential varied from high to very high. The soil use and management factors and conservation practices (CP) obtained a maximum value of 0.404, corresponding to the exposed soil; the second most representative class was agricultural areas, with a value of 0.145. The soil loss in the Malacara river basin varied from 0 to more than 200 t ha-1 year-1. In fact, 87.38% of the area presents a degree of sheet erosion normal to slight and, only 2.94% of the area has a high or very high degree of erosion. Moreover, due to the relief characteristics with shallow soils and intense rainfall in mountainous basins, knowing and understanding soil losses due to erosion is crucial for the adequate management of water resources in river basins. 


Sign in / Sign up

Export Citation Format

Share Document