Soil lead distribution characteristics and source identification in Hanyuan, upstream of Yangtze River, China

2021 ◽  
Vol 14 (15) ◽  
Author(s):  
Xiaowen Liu ◽  
Dan Zhou ◽  
Xue Tang ◽  
Ying Li ◽  
Ying Yang ◽  
...  
Author(s):  
Min Liu ◽  
Liangyuan Zhao ◽  
Qingyun Li ◽  
Yuan Hu ◽  
Huawei Huang ◽  
...  

Abstract The security of water environment in the source region of the Yangtze River (SRYR) is also vital to the water environment security of the whole basin. The results showed that the rivers in the SRYR were weakly alkaline and the values of total solid solubility (TDS), electrical conductivity (EC), turbidity concentration and salinity were higher than the values in the middle and lower reaches of the Yangtze River. The results showed that the dissolved trace elements detected displayed obvious regional distribution characteristics, showing a concentration trend of high in the Chumar River, low in the Dangqu, and middle in Tong River. All water quality indexes in the SRYR met the surface water environmental quality standard of class II based on GB 3838-2002 except Hg, while the average concentration of As exceeded 10 μg/L. The main enrichment elements in the SRYR were Li, Se, As and Pb, and their concentrations were far higher than the average concentration of the world rivers. Moreover, the HI and HQingrstion of children caused by As in the SRYR were greater than 1. This study could provide basic data for water environment protection and water resource management in the SRYR.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 910
Author(s):  
Lei Dong ◽  
Li Lin ◽  
Xianqiang Tang ◽  
Zhuo Huang ◽  
Liangyuan Zhao ◽  
...  

Excessive phosphorus is the main problem of water pollution in the main stream of the Yangtze River, while it is not clear about the distribution characteristics and spatial differences of phosphorus in the urban river stretches of the middle and lower reaches of the Yangtze River. In this study, a field survey in June 2014 revealed that the average particulate phosphorus (PP) concentration ranged from 0.195 mg/L to 0.105 mg/L from Wuhan (WH) in the middle reaches of the Yangtze River to Shanghai (SH, 1081 km from WH) in the lower reaches of the Yangtze River, and the average PP-to-the total phosphorus (TP) ratio decreased from 85.71% in WH to 45.65% in SH, while the average soluble reactive phosphate (SRP) concentration ranged from 0.033 to 0.125 mg/L, and the average SRP-to-total dissolved phosphorus (TDP) ratio increased from 60.73% in WH to 88.28% in SH. In general, PP was still an important form of TP in the middle and lower reaches of the Yangtze River. The concentrations of PP and SRP at different sampling locations and water depths in the same monitoring section showed differences, which might be related to the transportation and sedimentation of suspended sediment (SS) and differences in the location of urban sewage outlets. Historical data showed that the concentration and particle size of the SS decreased over time, while the discharge of wastewater also increased over time in the Yangtze River Basin. The measured results showed that there was a significant positive correlation between SS and PP. As a result, the concentration of SRP might increase in the middle and lower reaches of the Yangtze River. If the SRP concentration is not properly controlled, the degree of eutrophication of water body could significantly increase in the Yangtze River estuary, the riparian zone of the urban river stretches, the tributary slow-flow section, and the corresponding lakes connected with the Yangtze River.


1993 ◽  
Vol 21 (1-2) ◽  
pp. 90-95 ◽  
Author(s):  
W. C. Haneberg ◽  
G. S. Austin ◽  
L. A. Brandvold

2020 ◽  
Author(s):  
Caixia yu

<p>Based on CALIPSO level 2 aerosol profile data and surface meteorological observation data,aerosol extinction feature in haze was statistically analysed along Huaihe River. Using backward trajectory and cluster analysis method, pollution sources were investigated. Then vertical feature mask data(VFM) and ERA Interim data were used to analyse aerosol type, vertical distribution characteristics and typical weather patterns. The results showed that aerosol extinction coefficient along Huaihe River was largest near the ground with extinction coefficient 0.53 and decreased obviously along with high. Local pollution was primary source with contribution ratio of 46%. Furth more, pollution transmission from Yangtze River delta pollution zone and Beijing-tianjin-hebei was very important for the pollution event in Huai River basin. During stagnant synoptic situation, thermal inversion layer caused by warm advection at 850 hPa resulted in local air pollution, which was composed of continental aerosol. Weak upward motion in the surface layer transported pollutants to 0.4~0.8 km, where aerosol concentration was higher than that on the ground. When subtropical anticyclone 5880 isopiestic line location moves northward and westward, Yangtze River delta was controlled by high pressure through whole layer of the atmosphere, which lead to polluted dust aerosol accumulation. Due to downdraft, extinction effect was strongest near surface and decreased with height. In the early stage of cold air south down, cold north-west airstream caused by cold advection at 850 hPa brought Beijing-tianjin-hebei pollution to Huai River basin. Polluted continental aerosol and dust aerosol was main type of pollutants. The transport height of aerosols may be higher than 2 km with maximum transport being 1~2 km.</p>


Sign in / Sign up

Export Citation Format

Share Document