scholarly journals Road Extraction from High-Resolution Orthophoto Images Using Convolutional Neural Network

Author(s):  
Abolfazl Abdollahi ◽  
Biswajeet Pradhan ◽  
Nagesh Shukla
2018 ◽  
Vol 10 (9) ◽  
pp. 1461 ◽  
Author(s):  
Yongyang Xu ◽  
Zhong Xie ◽  
Yaxing Feng ◽  
Zhanlong Chen

The road network plays an important role in the modern traffic system; as development occurs, the road structure changes frequently. Owing to the advancements in the field of high-resolution remote sensing, and the success of semantic segmentation success using deep learning in computer version, extracting the road network from high-resolution remote sensing imagery is becoming increasingly popular, and has become a new tool to update the geospatial database. Considering that the training dataset of the deep convolutional neural network will be clipped to a fixed size, which lead to the roads run through each sample, and that different kinds of road types have different widths, this work provides a segmentation model that was designed based on densely connected convolutional networks (DenseNet) and introduces the local and global attention units. The aim of this work is to propose a novel road extraction method that can efficiently extract the road network from remote sensing imagery with local and global information. A dataset from Google Earth was used to validate the method, and experiments showed that the proposed deep convolutional neural network can extract the road network accurately and effectively. This method also achieves a harmonic mean of precision and recall higher than other machine learning and deep learning methods.


2019 ◽  
Vol 11 (5) ◽  
pp. 552 ◽  
Author(s):  
Lin Gao ◽  
Weidong Song ◽  
Jiguang Dai ◽  
Yang Chen

Road extraction is one of the most significant tasks for modern transportation systems. This task is normally difficult due to complex backgrounds such as rural roads that have heterogeneous appearances with large intraclass and low interclass variations and urban roads that are covered by vehicles, pedestrians and the shadows of surrounding trees or buildings. In this paper, we propose a novel method for extracting roads from optical satellite images using a refined deep residual convolutional neural network (RDRCNN) with a postprocessing stage. RDRCNN consists of a residual connected unit (RCU) and a dilated perception unit (DPU). The RDRCNN structure is symmetric to generate the outputs of the same size. A math morphology and a tensor voting algorithm are used to improve RDRCNN performance during postprocessing. Experiments are conducted on two datasets of high-resolution images to demonstrate the performance of the proposed network architectures, and the results of the proposed architectures are compared with those of other network architectures. The results demonstrate the effective performance of the proposed method for extracting roads from a complex scene.


2020 ◽  
Author(s):  
Yajun Liu ◽  
Yilin Guo ◽  
Ya Gao ◽  
Guiming Hu ◽  
Ju Ma ◽  
...  

Aims: The dysfunction of placenta development is correlated to the defects of pregnancy and fetal growth. The detailed molecular mechanism of placenta development is not identified in human due to the lack of material in vivo. Image-based reconstructions of GRN are still very underdeveloped. Methods and Results: In this study, immunohistochemistry images of different TFs in chorionic villus were obtained by a high-resolution scanner. Next, we used a convolutional neural network and machine learning method to infer gene interaction networks of human placenta from these images based on the transfer learning technique. The experimental results show that deep learning models reveals regulatory roles that have not yet been fully recognized. The spatial expression data reveal new regulatory relationships that traditional experiments have failed to recognize, and has allowed the development of gene regulation networks based on the spatial distribution of gene expression. Conclusions: We demonstrate the effectiveness of this approach in building networks using high-resolution images of the human placenta. Our analysis is of certain significance for further exploration of the development of the placenta and the occurrence of pregnancy-related diseases in the future. The datasets and analysis provide a useful source for the researchers in the field of the maternal-fetal interface and the establishment of pregnancy.


Sign in / Sign up

Export Citation Format

Share Document