Designing multi-layer quantum neural network controller for chaos control of rod-type plasma torch system using improved particle swarm optimization

2018 ◽  
Vol 10 (3) ◽  
pp. 317-331 ◽  
Author(s):  
Esmaeil Salahshour ◽  
Milad Malekzadeh ◽  
Reza Gholipour ◽  
Saeed Khorashadizadeh
Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1302 ◽  
Author(s):  
Cheng-Jian Lin ◽  
Xin-You Lin ◽  
Jyun-Yu Jhang

In this study, an improved particle swarm optimization (IPSO)-based neural network controller (NNC) is proposed for solving a real unstable control problem. The proposed IPSO automatically determines an NNC structure by a hierarchical approach and optimizes the parameters of the NNC by chaos particle swarm optimization. The proposed NNC based on an IPSO learning algorithm is used for controlling a practical planetary train-type inverted pendulum system. Experimental results show that the robustness and effectiveness of the proposed NNC based on IPSO are superior to those of other methods.


Author(s):  
Sabrine Slama ◽  
Ayachi Errachdi ◽  
Mohamed Benrejeb

This chapter proposes an optimization technique of Artificial Neural Network (ANN) controller, of single-input single-output time-varying discrete nonlinear system. A bio-inspired optimization technique, Particle Swarm Optimization (PSO), is proposed to be applied in ANN to avoid any possibilities from local extreme condition. Further, a PSO based neural network controller is also developed to be integrated with the designed system to control a nonlinear systems. The simulation results of an example of nonlinear system demonstrate the effectiveness of the proposed approach using Particle Swarm Optimization approach in terms of reduced oscillations compared to classical neural network optimization method. MATLAB was used as simulation tool.


2013 ◽  
Vol 333-335 ◽  
pp. 1384-1387
Author(s):  
Jin Jie Yao ◽  
Xiang Ju ◽  
Li Ming Wang ◽  
Jin Xiao Pan ◽  
Yan Han

Target localization technology has been intensively studied and broadly applied in many fields. This paper presents one improved particle swarm optimization technique in training a back-propagation neural network for position estimation in target localization. The proposed scheme combines particle swarm optimization (PSO), back-propagation neural network (BP), adaptive inertia weight and hybrid mutation, called IPSO-BP. To verify the proposed IPSO-BP approach, comparisons between the PSO-based BP approach (PSO-BP) and general back-propagation neural network (BP) are made. The computational results show that the proposed IPSO-BP approach exhibits much better performance in the training process and better prediction ability in the validation process than those using the other two base line approaches.


Sign in / Sign up

Export Citation Format

Share Document