Tool design and experimental verification for multi-stage cold forging process of the outer race

2014 ◽  
Vol 15 (9) ◽  
pp. 1995-2004 ◽  
Author(s):  
Tae-Wan Ku ◽  
Beom-Soo Kang
Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 532
Author(s):  
A Jo ◽  
Myeong Jeong ◽  
Sang Lee ◽  
Young Moon ◽  
Sun Hwang

A multi-stage cold forging process was developed and complemented with finite element analysis (FEA) to manufacture a high-strength one-body input shaft with a long length body and no separate parts. FEA showed that the one-body input shaft was manufactured without any defects or fractures. Experiments, such as tensile, hardness, torsion, and fatigue tests, and microstructural characterization, were performed to compare the properties of the input shaft produced by the proposed method with those produced using the machining process. The ultimate tensile strength showed a 50% increase and the torque showed a 100 Nm increase, confirming that the input shaft manufactured using the proposed process is superior to that processed using the machining process. Thus, this study provides a proof-of-concept for the design and development of a multi-stage cold forging process to manufacture a one-body input shaft with improved mechanical properties and material recovery rate.


2020 ◽  
Vol 311 ◽  
pp. 88-93
Author(s):  
Jong Bok Byun ◽  
Hyun Joon Lee ◽  
Jong Bok Park ◽  
Il Dong Seo ◽  
Man Soo Joun

In this paper, non-isothermal analysis of an automatic multi-stage cold forging process of a ball-stud is conducted using a new material model which is a closed form function of strain, temperature and strain rate covering low and warm temperatures for high-strength stainless steel SUS304. An assembled die structural analysis scheme is employed for revealing the detailed die stresses, which is of great importance for process and die design for metal forming of the materials with high strengths. Die elastic deformation is dealt with to predict final geometries of material with higher accuracy. A complete analysis model is proposed to be used for optimal design of process and die designs in automatic multi-stage cold forging of high-strength materials.


Sign in / Sign up

Export Citation Format

Share Document