A Simplified Anisotropic Yield Function not Requiring Parameter Optimization for Sheet Metals

Author(s):  
Jae-Hyuk Lim ◽  
Eun-Ho Lee
2003 ◽  
Vol 19 (1) ◽  
pp. 161-168 ◽  
Author(s):  
D.-A. Wang ◽  
W. Y. Chien ◽  
K. C. Liao ◽  
J. Pan ◽  
S. C. Tang

ABSTRACTAn approximate anisotropic yield function is presented for anisotropic sheet metals containing spherical voids. Hill's quadratic anisotropic yield function is used to describe the anisotropy of the matrix. The proposed yield function is validated using a three-dimensional finite element analysis of a unit cell model under different straining paths. The results of the finite element computations are shown in good agreement with those based on the yield function with three fitting parameters. For demonstration of applicability, the anisotropic Gurson yield function is adopted in a combined necking and shear localization analysis to model the failure of AA6111 aluminum sheets under biaxial stretching conditions.


1998 ◽  
Vol 120 (2) ◽  
pp. 177-182 ◽  
Author(s):  
S. K. Esche ◽  
R. Shivpuri

A review of some existing criteria for diffuse necking in sheet metals is given and their limitations are discussed. The introduction into production of new sheet materials whose plastic deformation is impossible to be modeled using Hill’s 1948 anisotropic yield function necessitates improvements of these existing criteria to accurately describe their necking behavior. In this paper, a generalization of the existing diffuse necking criteria for materials describable by Case IV of Hill’s 1979 anisotropic yield function is presented. The proposed criterion is consistent with the previous criteria. It predicts a significant effect of Hill’s 1979 yield surface shape factor on the critical principal strain in the range of negative minor strains while in the range of biaxial tension this influence is small.


2018 ◽  
Vol 85 (12) ◽  
Author(s):  
Kelin Chen ◽  
Stelios Kyriakides ◽  
Martin Scales

The shear stress–strain response of an aluminum alloy is measured to a shear strain of the order of one using a pure torsion experiment on a thin-walled tube. The material exhibits plastic anisotropy that is established through a separate set of biaxial experiments on the same tube stock. The results are used to calibrate Hill's quadratic anisotropic yield function. It is shown that because in simple shear the material axes rotate during deformation, this anisotropy progressively reduces the material tangent modulus. A parametric study demonstrates that the stress–strain response extracted from a simple shear test can be influenced significantly by the anisotropy parameters. It is thus concluded that the material axes rotation inherent to simple shear tests must be included in the analysis of such experiments when the material exhibits anisotropy.


2016 ◽  
Vol 725 ◽  
pp. 653-658 ◽  
Author(s):  
Toshiro Aamaishi ◽  
Hideo Tsutamori ◽  
Eiji Iizuka ◽  
Kentaro Sato ◽  
Yuki Ogihara ◽  
...  

A new plane stress yield function using the 3rd-degree spline curve is proposed for the anisotropic behavior of sheet metals. This yield function considers the evolution of anisotropy in terms of both r values and stresses. In order to demonstrate the applicability of the proposed yield function, hole expanding tests with mild steel and 6000 series aluminum alloy sheets were simulated.


Sign in / Sign up

Export Citation Format

Share Document